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Abstract: Slums are a global urban challenge, with less developed countries being particularly
impacted. To adequately detect and map them, data is needed on their location, spatial extent and
evolution. High- and very high-resolution remote sensing imagery has emerged as an important
source of data in this regard. The purpose of this paper is to critically review studies that have used
such data to detect and map slums. Our analysis shows that while such studies have been increasing
over time, they tend to be concentrated to a few geographical areas and often focus on the use of a
single approach (e.g., image texture and object-based image analysis), thus limiting generalizability to
understand slums, their population, and evolution within the global context. We argue that to develop
a more comprehensive framework that can be used to detect and map slums, other emerging sourcing
of geospatial data should be considered (e.g., volunteer geographic information) in conjunction with
growing trends and advancements in technology (e.g., geosensor networks). Through such data
integration and analysis we can then create a benchmark for determining the most suitable methods
for mapping slums in a given locality, thus fostering the creation of new approaches to address
this challenge.

Keywords: high-and very high-resolution imagery; remote sensing; slums; volunteer geographic
information; geosensor networks; image analysis

1. Introduction

Within the last fifty years the human population has increasingly become more urbanized. Most of
this urbanized growth has occurred in developing countries, which often lack the ability to provide the
infrastructure and basic services necessary to absorb the influx of people to cities [1,2]. This has often
resulted in an increase in poverty rates in developing countries, which is manifested in the proliferation
and expansion of slums in urban areas [3]. The United Nations (UN) estimates this population to be
about one billion people at present, and is projected to increase further to two billion by 2030 and
three billion by 2050 if more effective measures are not put in place to manage slum populations.
This estimate is based on a slum being classified as a household with one or more of the following
deprivations: inadequate access to water, sanitation and other infrastructure, poor structural quality of
housing, overcrowding and insecure residential status [4]. However, no standard definition yet exists
for slums [5]. While the terms “slums” and “informal settlements” are often used interchangeably in
the literature, the United Nations Human Settlement Programme views an informal settlement as one
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type of slum, especially where there is insecurity of tenure. In the context of this paper, we view both
slums and informal settlements as being one in the same, that is, disadvantaged communities that
continue to have large impact on the physical and economic landscapes. hile developing a universal
consensus on what is a slum is challenging, this is compounded by the often lack of reliable up-to-date
information on their location, spatial footprint, and evolution over time [6]. Part of the reason for
a non-standardized definition is related to the heterogeneity of slum characteristics worldwide [7].
Another reason is that there is no common agreement between experts concerning what criteria
should be used to define slums [8]. This has resulted in many slums not being mapped and thus,
being invisible to the world. Maps of slums are important for several reasons, probably one of the most
important being that if it does not exist on a map, governments may not be liable for the provision of
infrastructure (e.g., roads) and services (e.g., water and sanitation) to these slums [6]. The Kibera slum
in Nairobi, Kenya, for example, has had a long history of failed policies and inadequate provision
and services on the part of government dating as far back as the early 1990s [9]. However, since the
digital mapping of this slum in late 2009, there has been a vast improvement and increase in the
number of government assisted programs and services provided to this slum [10]. Consequently, it is
essential to devise novel adequate methodologies for slum mapping, which are not necessarily reliant
on top-down government driven initiatives but also maps generated through a bottom-up process
(e.g., slum dwellers mapping their own slums) as will be discussed in Section 5.3.

It is important to recognize that maps of slums serve a wide range of stakeholders, from slum
dwellers to that of urban planners and policy makers. As a result, there is a need for slum maps at
different spatial, temporal and thematic resolutions. While general maps of slums are important to
United Nations agencies seeking to alleviate poverty under the Sustainable Development Goals [11],
more detailed maps of slums may be useful for local governments wishing to improve access to
infrastructure for slum dwellers. It is important to recognize that the data used for mapping slums
needs to go beyond just delineating their boundaries, but should include a wide range of information
products to address the needs of the different stakeholders.

Data used to study and map slums come from a variety of sources, one of which is remote sensing
imagery collected from aerial and spaceborne platforms [12]. Remote sensing offers several advantages
over traditional survey-based methods (e.g., census-based approaches) of mapping the growth of
slums, for example, they provide a synoptic view with the ability to capture the situation on the
ground in near real-time. Since the late 1990s high spatial resolution spaceborne imagery, with a
resolution of one to four meters [13], over slum areas has allowed the collection of vast amounts
of data on slums. Such data allows for the comparison of inter and intra heterogeneity between
slums. Recently, the emergence of very high spatial (sub-meter [13]), spectral and temporal resolution
imagery has provided new opportunities to study the urban landscape at a finer scale than ever
before [14]. With this new data source, researchers can now refine their analysis from the scale of
settlements to that of individual dwellings, providing a powerful tool for detecting and mapping
slums, which can potentially lead to a deeper understanding of the emergence and evolution of slums.
The increased interest and utilization of high- and very high-resolution (H/VH-R) imagery as a key
source of information on slums has resulted in an increasing body of literature over the last two
decades. This provides, for the first time, an opportunity to study and analyze the different approaches
and methods that have been used to study slums using H/VH-R imagery.

Motivated by the need for a more systematic review of approaches used to study slums using
H/VH-R imagery, a recent review of such methods applied to slums over the last 15 years by
Kuffer et al. [15] has attempted to address this gap in slum research. That study provided a high-level
overview of the state of the art methods, which have used characteristics of slums extracted from
imagery, with a spatial resolution of 5 m or less, to identify and map slums. The approaches used
in that study were evaluated at the global level, providing valuable insights on the frequency of
such approaches and their reported accuracies in the literature. Given that the characteristics of
slums, both physical and socio-economic, can vary from one location to the next, a more systematic



Urban Sci. 2018, 2, 8 3 of 38

analysis examining how such methods have been applied at a more local geographic level is required,
which is the purpose of this paper. As we will discuss, such analysis can be used to better understand
the role that location plays in determining the suitability of methods for different locations, which
may be hidden in a global comparison of methods. For example, in their classification of methods,
Kuffer et al. [15] showed that on average, approaches using machine learning, Object-based Image
Analysis (OBIA) and pixel-based methods produced very similar accuracies, about 86%. In their
review, studies using pixel-based approaches, in particular, showed the lowest amount of variation in
reported accuracies compared to the other two methods. This would suggest that this method may be
more suitable for identifying slums (i.e., lowest variability and high accuracy). However, the authors
recommended otherwise, suggesting the use of machine learning over all other approaches. The large
variability in reported accuracies in some methods could be due to a number of reasons, including, an
examination of studies, which include very small versus very large geographic areas (leading to increase
difficulty in classification), studies classifying very simple versus more complex landscapes, and variability
in the complexity, training and calibration of the methods used to detect and map slums.

In this paper, we extend previous work that has used remote sensing data to study slums.
Our objectives are twofold: (1) provide a more in depth geographic analysis of those approaches that
have been applied to H/VH-R remote sensing imagery to study slums; and (2) for each approach,
assess its applicability for studying the temporal evolution of slums at different growth stages. With
respect to our first objective, this enables us to identify where H/VH-R imagery have been used to
study slums, and in such instances, which approaches have been applied. In respect to our latter
objective, this aspect of slums, although identified as an important research need in many studies, to
date, there has been only few studies that have investigated the temporal growth of slums (e.g., [16,17]).
Of such studies, none have assessed the applicability of approaches to the various growth stages of
slums. This enables us to identify key commonalities in the study of slums from a H/VH-R imagery
perspective along with identifying key emerging challenges and opportunities in this area of research,
which we have also attempted to address in this paper for improving the detection and mapping of
slums. With respect to opportunities, we discuss the important value added in combining remote
sensing with auxiliary data, some of which can be captured from emerging sources of data such as
volunteered geographic information (VGI) and unmanned aerial systems (UASs). Further, taking into
account the increasing number of sensors and related technologies that continue to collect information
on people, place and society on a daily basis, we discuss the important need to establish geosensors
networks for improving the collection of information on slums. With the growth and advancement
in imaging sensor technology, which increasingly provides greater spatial, spectral and temporal
resolutions, the reliance on H/VH-R imagery for slum mapping is expected to increase. Consequently,
the demand for identifying opportunities of using H/VH-R imagery and best practices for the study
of slums is also expected to increase.

The remainder of this paper is structured as follows. In Section 2, characteristics of remote
sensing data used for capturing slum information are examined with main emphasis on the use
of remote sensing imagery to both augment and replace traditional sources of data where needed.
Section 3 discusses the various stages in the temporal growth of slums while Section 4 reviews the
most commonly used approaches for the analysis and mapping of slums using H/VH-R imagery.
Section 5 discusses some of the challenges of using remote sensing data on its own for mapping slums.
This section further looks at various opportunities for improving or supporting current approaches
for the collection of information and mapping of slums. Finally, Section 6 provides a discussion and
outlook for future research.

2. From Surveys to Remote Sensing Data in Slum Mapping

One of the most widely used tools for collecting information on slums has been the use of
population and housing census surveys. In this approach, data is collected though surveys as a basis
for deprivation or poverty mapping [18], with the purpose of using this information as an indication of
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slums [19]. Examples of such research using census data for studying slums include work by [20–22].
These types of surveys are not uncommon, and compared to other sources of data such as H/VH-R
imagery, country-level census data is usually available for most countries [19].

However, there are several limitations with the use of census data, at least on its own, for detecting
and mapping slums. First, the collection of census data is very labor intensive, time consuming and
requires substantial financial resources [23]. Second, there often exist long temporal gaps between
census data collection campaigns, typically 5 to 10-year intervals on average [24–27], with intervals
extending to several decades in some cases [28,29]. Additionally, when the raw census data is collected,
extended time (as much as three years in some instances [30] is needed to compile the data and make
the information products available to users [31]. Given the highly dynamic nature of some slums
(e.g., a growth rate upwards of 1000 persons per day in Dhaka, Bangladesh [32], the spatial information
collected using such surveying methods may already be obsolete when released to users.

Third, census statistics are usually provided at the aggregated city or neighborhood level, failing to
convey the fine-grained heterogeneity that is often present in slums [33]. These units of aggregation also
vary in size and do not include information on housing density and quality [34], essential components
for both spatially locating slums and discriminating them from their surroundings. Moreover,
while remarkable strides have been made towards disaggregating census data to much higher spatial
resolutions (e.g., [35]), only a few variables such as population counts have been examined.

Fourth, slum dwellers are often reluctant to take part in household surveys because of fear of
being evicted by authorities once their location is known [36], or other misuses of such information
against them [37,38]. Lastly, even when up-to-date census data does exist, a lack of rigorous quality
control implemented in some countries often impacts the ability to rely on such data for mapping and
developing policies necessary to reduce slum populations [39,40].

Motivated by these limitations, remote sensing has emerged as a feasible approach for the
large-scale collection of slum information at a fine level of granularity. Remote sensing data is typically
used alongside field data, which is used to both calibrate and validate this data [41]. Additionally,
existing auxiliary datasets can be used for this purpose, for example, data on infrastructure, topography,
soil, geology and vegetation, can serve as reference data for the validation of data extracted from
remote sensing sources [42,43].

Remote sensing provides several advantages over census surveys for collecting information on
slums. First, the cost of acquiring H/VH-R imagery has reduced substantially over the last decade [44].
This has been due to various factors, which include the increase in the number of H/VH-R imagery
providers, advancements in sensor technology allowing for the collection of larger swaths of data,
the growth of free imagery platforms such as Google Earth, and decreasing costs of computing
equipment used for processing large amounts of data, among others. The economic efficiency of
using high-resolution imagery to reduce field sampling has also been shown to have substantial
cost savings [45]. These advantages are further enhanced by the digital format of current remote
sensing imagery, which enables the direct application of semi and fully automated feature extraction
algorithms, leading to further reduction in cost.

Besides cost, the ability of modern remote sensing systems to provide frequent systematic coverage
over long periods of time enable longitudinal studies of slums. This overcomes the limitations of
traditional survey-based data collection methods, which are often interrupted by access constraints
(e.g., unsafe zones [46]), and the limited availability of survey staff and resources. In contrast, remote
sensing systems are able to collect information at constant time intervals and at very high spatial
resolutions. This systematic nature of remote sensing data is particularly important for the study of
slums and their dynamics because of their rapid growth rates, which require much more frequent
monitoring. Such monitoring capability is essential for measuring the impact and success of relief
efforts, which in turn can inform policies aimed at improving the living conditions in slums. These
benefits, taken together, makes remote sensing an invaluable and scalable solution for the collection of
large amounts of information on slums.
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Once data is collected and made available, it then becomes necessary to process it so that
meaningful information and knowledge can be derived. As with other types of data, many approaches
have been used to process remote sensing data. However, before reviewing the various H/VH-R
remote sensing approaches used to study slums in Section 4, it is first important to understand the
temporal stages of slum growth, since this information can be used to determine the most appropriate
approaches to be used to identify and map slums.

3. Temporal Growth of Slums

The development of slums is not random process and research has shown that various factors
(e.g., availability of land and jobs) influence where slums dwellers build [6]. This growth can take
different forms depending the circumstances of the slum dweller (e.g., conflict or war leading to
mass land invasions [47]), the various actors involved (e.g., politicians and land developers [48]) and
historical land practices (e.g., segregation [49]) among others. Slum formation and growth can be
modeled following one of three processes [50]: (1) incremental growth where the land is illegally
occupied, (2) overnight invasions where the land is informally but legally occupied by residents, and
(3) overnight invasions where the land is occupied illegally. The most common model used to study
the growth of slums, however, has been the incremental growth model [51].

Many researchers have studied the growth of slums (e.g., [48,52–56]). Sliuzas [57] suggests that
physical changes to the incremental growth of slums, as observed from H/VH-R remote sensing
images, can be monitored at three distinct stages: infancy, consolidation and maturity. During the
infancy stage, few dwellings have been built on the land. As dwellings continue to grow in number,
an increase number of services are introduced, along with improvements to dwellings’ condition
during the consolidation stage. At this point a settlement boundary begins to take shape. Further
growth leads to the unsustainable densification of housing and increasing congestive conditions in
slums. Growth at this maturity stage occurs at the expense of demolition. Vertical densification of
slum dwellings may occur at this stage [58]. Moreover, it is also important to note that while slums
in most cases have been known to develop from informal building practices, this development can
also start from formal land development, which may become increasingly degraded over time [59].
It is, therefore, equally important to not only monitor the growth of slums, but to also to monitor the
growth of different parts of cities that are likely to be transformed into slums in the future.

While studies have described the various stages in the growth of slums, very few studies have
measured changes in such properties of slums over time using H/VH-R remote sensing imagery.
As suggested by Kit and Lüdeke [17], this is in part related to the unique nature of slums, which means
that the development of fully automated slum identification methods continues to be imperfect.
Kuffer et al. [60] also suggests that the limited number of multitemporal studies on slums could be
due to limitations with acquiring data on these settlements, as well as obtaining local knowledge to
supplement this data overtime. This local knowledge is crucial and represents data that can be used to
both validate the results of mapping approaches, as well as improving the collection of slum data over
time [6]. Further, the non-standardized collection of slum data for different time periods can make
the multitemporal physical comparison of slums difficult, or even unreliable in some cases. Added
to this, the definition of what a slum is can also change over time [61], which makes it difficult to
compare slums at different growth stages. Moreover, in places such as India where several definitions
for slums exist [62], the choice of the most appropriate definition to be used may be linked to different
issues altogether.

Having discussed the need for the consistent and frequent monitoring of slums using H/VH-R
imagery in Section 2, and the need for monitoring their growth and evolution overtime in this section,
the next section reviews key approaches that have been used to study the spatial properties of slums.
We further examine the suitability of these approaches with respect to monitoring the different stages
of slums growth.
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4. Slum Mapping from Remote Sensing

Generally, key approaches for mapping slums from remote sensing data have been based on three
processing steps:

• Detection—this step includes methods that locate features of interest in an image and is usually
the first stage in image classification.

• Delineation—this step involves identifying the spatial extent of features.
• Characterization—in this step, features of interest are labeled as belonging to a specific class.

In view of these steps, various approaches and techniques have been suggested to exploit remote
sensing data for slum mapping. In a broader perspective, the wide variety of approaches that have been
reported in the literature give rise to seven categories that can be identified based on the core principle
that drive the mapping process: (1) multi-scale; (2) image texture analysis (3) landscape analysis;
(4) object-based image analysis; (5) building feature extraction; (6) data mining; and (7) socioeconomic
measures. Table 1 presents a summary of these various categories, along with some representative
examples from the literature. Approaches discussed within each category are also examined with
respect to the image properties they utilize to detect and map slums. Based on the advantages and
limitations discussed in this section, we also outline areas of future work, which will serve as the basis
for a research agenda that is presented in Section 6.

Table 1. Remote sensing approaches using H/VH-R imagery for identifying and mapping slums.

Approach Properties

Multi-scale
(Section 4.1)

Description
Discriminate objects based on properties at different scales.

Commonly exploited remote sensing attributes
Spatial, contextual and multi-scale.

Extraction approach
Detection and characterization.

Sample studies

1. Kit et al. [17]
2. Filho and Sobreira [63]
3. Leao and Leao [64]

Advantages

1. Properties of objects at different scales aid in better discrimination.
2. Provide information on intra and inter diversity.
3. Can provide valuable information to study the structural changes of a feature over time.

Limitations

1. Research mainly assume a mono-fractal model for slums.
2. Some features in the built environment may not exhibit properties of self-similarity with

varying spatial scales.
3. Most research using fractal geometry has focused on large cities where differences between

slums and non-slums is more noticeable compared to smaller cities, towns and villages.
4. Depending on the measure used to calculate the fractal value, values can differ significantly.
5. Lacunarity has the potential to misplace or misidentify slums covering areas smaller than the

gird sizes used to collect information.
6. Very few measures have been evaluated besides lacunarity.
7. Lacunarity values from one slum may be non-transferable to another slum due to specific

qualities of the imagery being used such as its spatial and radiometric resolution.
8. Research on lacunarity mainly focus on the use binarized imagery, which leads to the loss of

valuable image properties of slums compared to the use of grayscale or color imagery.

Image texture
analysis

(Section 4.2)

Description
Extract features in an image based on its shape, size and tonal variation within the image. Image
texture analysis have widely been used as part of OBIA extraction strategies.

Commonly exploited remote sensing attributes
Spatial, spectral, contextual and multi-scale.

Extraction approach
Detection and characterization.
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Table 1. Cont.

Approach Properties

Image texture
analysis

(Section 4.2)

Sample studies

1. Kuffer et al. [60]
2. Stasolla and Gamba [65]
3. Pesaresi and Ehrlich [66]

Advantages

1. Uses contextual information inherent with objects in real life to better separate slums from
their surroundings.

2. Many texture measures as available.

Limitations

1. The small size of slum dwelling may be detected as spurious pixels and removed during
MM processing.

2. If dwellings are very close, dilation type operations may merge dwelling together.
3. MM uses scene specific rules, which may not be transferrable to other image scenes.
4. Few studies have applied MM to color imagery to study slums.
5. MM measures such as DMP often lack completeness, even when auxiliary data is used.
6. The unique properties of individual slums and the imagery used makes it difficult to transfer

textures at specific windows sizes and at a particular shape found significant for one slum to
another slum.

7. Many GLCM texture measures are correlated.

Landscape
analysis

(Section 4.3)

Description
Use spatial metrics developed in the field of landscape ecology to quantitatively analyze the spatial
patterns of land cover. These metrics describe spatial composition and configuration.

Commonly exploited remote sensing attributes
Spatial and spectral.

Extraction approach
Detection and characterization.

Sample studies

1. Baud et al. [34]
2. Kuffer et al. [67]
3. Owen [68]

Advantages
Wide variety of metrics available.Generally easy to interpret.

Limitations

1. Landscape metrics are completely dependent on an initial spectral characterization of the
remotely sensed imagery.

2. Values can change with scale, spatial resolution and model of land cover land use used.
3. Many metrics are correlated with each other.
4. Process of trial and error in the choice of the most suitable metric for use.
5. Image must first be classified.

Object-based
image analysis

(Section 4.4)

Description
Treats images as a composition of objects.

Commonly exploited remote sensing attributes
Spatial, spectral, contextual and multi-scale.

Extraction approach
Detection and characterization.

Sample studies

1. Hofmann [69]
2. Veljanovski et al. [70]
3. Novack and Kux [71]

Advantages

1. Better reflect features in reality
2. Over 30 years of OBIA research available

Object-based
image analysis

(Section 4.4)

Limitations

1. Segmentation parameters often chosen subjectively.
2. Many segmentation parameters are interconnected.
3. Clustered buildings lead to merging during object extraction.
4. Building materials used in slums may be similar to other surface features such as unpaved

roads and reduce extraction performance.
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Table 1. Cont.

Approach Properties

Object-based
image analysis

(Section 4.4)

5. Shape of slum dwellings is not necessarily maintained across multiple scales due to the small
sizes of slum dwellings.

6. Shape of building often not preserved at multiple scales due to small size of slum dwellings.
7 OBIA rules are image specific.

Building feature
extraction

(Section 4.5)

Description
Use computer generated algorithms and tools to help humans with extracting knowledge from
large volumes of data.

Commonly exploited remote sensing attributes
Spatial, spectral and contextual.

Extraction approach
Detection, delineation and characterization.

Sample studies

1. Mason et al. [72]
2. Li et al. [73]
3. Ruther et al. [74]

Advantages

1. Objects not within the threshold range of slum heights being studied can be filter out.
2. Can be used to develop 3D models of slums.

Limitations

1. Artifacts such as vegetation can occlude parts of slums and lead to incorrect results.
2. Typical building cues commonly used in building extraction (e.g., parallelism and

rectangularity) are less reliable in some slums.
3. Some algorithms for extracting the rooftops of buildings encounter issues when opposite sides

of roofs are at different heights such as on a house on a slope.
4. Active contour methods for extracting building outlines require initialization.
5. Active contour methods have problems with distinguishing objects of the same height.
6. Challenging to select the appropriate weights used for determining the shape of

active contours.
7. Only small areas within slums have been tested with no extrapolation to larger

geographic areas.

Data mining
(Section 4.6)

Description
Use elevation data to extract individual slum dwellings.

Commonly exploited remote sensing attributes
Spatial, spectral and contextual.

Extraction approach
Detection and characterization.

Sample studies

1. Graesser et al. [75]
2. Vatsavai. [76]
3. Busgeeth et al. [77]

Advantages

1. Can analyze large amounts of data.
2. Many algorithms exist.
3. Methods can be more easily automated compared to other methods discussed.
4. Available in many different open source software and programming packages.

Limitations

1. Typically, requires large amounts of data for training, which are not always available
for slums.

2. Empirically specific for the data algorithms they are trained on.
3. Require significant computing resources.

Socio-economic
measures

(Section 4.7)

Description
Estimate socio-economic information from remotely sensing imagery or link them with census or
similar data.

Commonly exploited remote sensing attributes
Spatial and spectral.

Extraction approach
Detection and characterization.
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Table 1. Cont.

Approach Properties

Socio-economic
measures

(Section 4.7)

Sample studies

1. Niebergall et al. [78]
2. Avelar et al. [79]
3. Tapiador et al. [80]

Advantages

1. Identifies the relationship between physical and social dimensions.
2. Can be used to understand different population strata.

Limitations

1. Rigid assumptions must be made with respect to what makes up a specific social class.
2. Often difficult to combine socio-economic and remote sensing data because of differences in

spatial and temporal resolutions.
3. Many studies have focused on small geographic locations, the results of which may be

difficult to apply to larger areas.
4. Many metrics are correlated.

4.1. Multi-Scale Approaches

Multi-scale approaches utilize tools and techniques that can be used to discriminate features based
on properties that emerge across different spatial scales. Common multi-scale methods used to analyze
slums include fractal and lacunarity measures [81,82]. While fractals are concerned with measuring
the geometrical complexity associated with the shape of a feature [83], lacunarity has mainly been
used as a measure of internal heterogeneity, analyzing the size distribution of open spaces between
features [68]. As it relates to slums, large fractal and lacunarity values suggest chaotic patterns of
growth typical of many slums.

Galeon [84], for example, used fractal geometry to distinguish between slums, semi-formal and
formal settlements in Quezon city in the Philippines. In that study, fractal measures gave poor results
when distinguishing between slums and formal settlements. However, this measure provided better
discrimination between slums and semi-formal settlements, with semi-formal settlements having
higher fractal values than slums. In another study, Filho and Sobreira [63] compared two methods for
deriving lacunarity, a box counting and a gliding box routine, for distinguishing between different
socio-economic groups in Recife, Brazil. Socio-economic scores were determined from census data
and ranged in value from 0 to 1, with higher values suggestive of a higher socio-economic standing.
This study showed that the gliding box routine performed much better, with a classification accuracy
of 80% compared to 50% when using the box counting algorithm.

The same researchers have also explored the combination of both fractal and lacunarity for
distinguishing between slums and formal settlements in the cities of Campinas and Rio de Janiero
in Brazil [81]. In that study, the authors used a box counting routine to extract lacunarity values
for varying box sizes, with box sizes close to 100 m2 leading to convergence between slums and
formal settlements, noting that higher lacunarity values were found to be associated with informal
settlements. Other studies have additionally combined image preprocessing routines with lacunarity
to help distinguish between formal and slum areas (e.g., [17,51]).

At the same time, several issues have been identified with the use of fractal geometry and
lacunarity for studying slums. Concerning the calculation of fractal values, most methods apply
a mono-fractal approach on only one image band [85]. These studies assume that a single fractal
dimension can be used to characterize slum settlements. However, as Sun et al. [85] suggests, the scaling
behavior of image properties in remote sensing imagery generally deviates from the assumption of
a mono-fractal dimension. In the case of lacunarity, one issue is that the boundaries of slums do not
regularly correspond to the grid cells used to extract lacunarity values. This method can therefore
potentially misclassify or misidentify slums covering smaller areas [17]. In addition, the application of
lacunarity at too coarse scale may result in loss of information at the transition zone between slums
and non-slums. Further, because objects can vary both spatially and spectrally in high-resolution
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imagery [85], lacunarity values calculated for slums in one area may not be applicable to another
location [86]. Finally, as for multi-scale approaches in general, much of the work in this area have
focused on slums in large cities, where discrimination from other settlement types is more noticeable.
Such discrimination, however, may not be present in the case of smaller cities in many developing
countries where problems with urbanization is expected to be especially acute [64]. Given these
limitations, we would argue, that more research is therefore needed to determine the suitability of
multi-fractal approaches for studying slums, as not all features in a given scene exhibit the property of
self-similarity [63]. Further, with respect to monitoring the growth of slums, multiscale approaches are
more suitable for monitoring growth at the consolidation and maturity stages. This is especially the
case since these approaches typically lose their multiscale characteristics with decreasing density of
features at a local level [87].

4.2. Image Texture Analysis

Image texture represents a repeated variation of intensity and color that is directly portraying
object structure and spatial arrangement in an image [88]. This analysis is often complex as image
features tend to exhibit a scale-dependent behavior, leading to difficulties in the interpretation of
results [89]. Texture measures can be extracted using several approaches, namely structural, statistical,
model-based or transform methods [90]. Most methods of texture analysis applied to slums examined
in the literature, however, have used structural and statistical approaches.

Structural approaches view image texture as a composition of well-defined primitives [91].
A widely-used method in this regard is mathematical morphology (MM). MM, which is based on
set theory, uses a set of image operators (e.g., erosion and dilation) to extract features from an image
based on the shape and size of quasi-homogeneous regions [92]. As it relates to slums, MM has largely
been used to refine the outputs of processes used to extract features from binary images, such as the
removal of trees, fences and other unwanted artifacts (e.g., [93,94]). Some work, albeit limited, has
also applied MM to grayscale images as part of multi-scale applications within slums. An example
of this is the use of the Differential Morphological Profile (DMP), which employs a combination of
morphological operators and derivatives of the resulting morphological profile [95]. For instance,
Pesaresi and Ehrlich [66] extracted DMP signatures for different building types from the Kibera slum
and surrounding formal commercial and residential areas in Nairobi, Kenya from high-resolution
imagery. This study showed that DMP signatures for slum dwellings were smaller (3 m) in comparison
to formal settlements (8 m).

In contrast to structural approaches, statistical approaches focus on the spatial relationship and
the intensity of pixels locally to uncover patterns between groups of pixels [91]. One of the most
commonly used methods has been based on the Grey Level Co-occurrence Matrix (GLCM) as described
by Haralick et al. [96]. For example, Kohli et al. [19] proposed GLCM texture measures (e.g., entropy,
contrast, variance and the mean) for extracting slums at the settlement level since these measures are
better able to detect the high density of dwellings typical to slums. In another study, Kuffer et al. [97]
found that slums in Mumbai, India had much lower variance texture values compared to surrounding
formal areas. In contrast to these studies, Stasolla and Gamba [65] suggested the use of several
autocorrelation texture measures for discriminating slums and formal settlements using radar data.
However, this study utilized only few classes for classifying the land use land cover, thus requiring
additional research for evaluating the suitability of this approach in more complex urban environments.
It is also worth noting that this study is one of only a few who exploited radar imagery for mapping
slums (e.g., [98–100]).

Several limitations have been identified with the use of image texture analysis for detecting and
mapping slums. First, with respect to structural approaches, using operations such as dilation in
scenes where slum dwellings are located close together may hinder the ability to distinguish between
individual dwellings. Second, the application of structural approaches typically involves scene-specific
rules for extracting particular features of interest [101], therefore limiting the generalizability of such
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methods. Finally, the use of multi-scale approaches such as DMP often lack completeness, even in
cases where auxiliary data, such as shadow footprints, are used [92].

Various issues have also been identified with the application of statistical texture measures when
used to study slums. One issue is that texture measures extracted for slums tend to vary across
different locations, even within the same slum. This can be explained by physical differences in slums,
for example, size, shape, orientation and building materials used to construct dwellings [75,77,102],
the shape [103] and size of windows used to extract texture, as well as the spatial resolution of the
imagery [104]. Consequently, textural patterns extracted from one image may not be applicable to
another image [105]. This is because image texture does not consider pixels independently, instead,
groups of pixels, which form an objective pattern are used to distinguish different types of features.
This makes texture analysis approaches suitable for extracting slums at their consolidation and maturity
growth stages, wherein distinct clusters of pixels forming a settlement boundary is more observable
compared to the infancy growth stage. Finally, many statistical texture measures extracted from remote
sensing imagery have been found to correlated with each other [106], with the need to further explore
other approaches and methods for deriving image texture.

4.3. Landscape Analysis

Quantitative landscape metrics have been used to analyze the spatial patterns of land cover,
describing both their composition and configuration [107]. In such approaches, the main unit of
structural analysis used is a patch, i.e., features made up of pixels regions that are adjacent to each
other and have the same land cover. Kuffer et al. [67], for example, evaluated several landscape metrics
in slums and their surrounding areas, with the overall goal of creating an unplanned settlement index
(USI). Two study areas were chosen, New Delhi, India and Dar es Salaam, Tanzania. The results of
that study showed that discriminating indicators for unplanned settlements varied in both study
areas. In New Delhi, the most suitable metrics were mesh size, landscape division index, patch
density, contagion, aggregation and Simpson’s evenness index. In the case of Dar es Salaam, the most
suitable metrics were mean area, patch density, aggregation index and Shannon’s diversity index.
Furthermore, a combination of those indicators using multi-criteria analysis showed that high USI
values were associated with slums when compared to more formal areas. In the same vein, Owen [68]
and Baud et al. [34] applied landscape metrics and found that vegetation was much more compact in
slums compare to other formal areas.

Similar to other approaches discussed, landscape metrics also have several challenges when
used to study slums. According to Mesev [108], landscape metrics are completely dependent on an
initial spectral characterization of the remote sensing imagery. These metrics are also absent from the
actual process of the characterization of homogeneous classes [109]. Such concerns mainly relate to the
accuracy of extracting homogeneous classes that are used as input in landscape analysis. This is due to
their dependence on the interpretation of images, which leads to subsequent changes in the results of
analysis with variations in scale, spatial resolution, and differences in the dichotomous key used for
deriving land cover classes. Another limitation with the use of landscape metrics is that, although a
wide variety of metrics exist, many of these are correlated with each other [110,111]. Added to this,
little guidance exists on the selection of the most effective landscape metrics for various applications
(e.g., slum analysis), often leading to a process of trial- and-error in the choice of the most suitable
landscape metrics for use [112]. These caveats with the use of landscape metrics suggest the need to
further investigate the relationship between different metrics for the same land cover classes, with the
goal of formalizing a set of best practices for selecting the most appropriate landscape metrics based
on landscape suitability. Finally, with respect to the monitoring of slums, given their dependence on
land cover information, landscape metrics are better suited for monitoring their consolidation and
maturity growth stages.
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4.4. Object-Based Image Analysis

In object-based image analysis (OBIA) an image is treated as being made up of a composition
of objects. Properties such as size, shape, texture, relationship with neighboring objects [113], as well
as various combinations of these properties are used to aid the object extraction process [114,115].
OBIA has also been applied at multiple scales since it has been found to be useful in extracting
semantically significant regions in remote sensing imagery [116]. Moreover, because of its ability to
better emulate human cognitive image interpretation, it has been suggested that the results of OBIA
better reflect objects in real life [117].

With respect to slums, one of the first studies using OBIA was by Hofmann [69]. In that study,
multi-resolution analysis was first used to segment Ikonos imagery at different spatial scales over
Cape Town, South Africa. Image objects were extracted at the different scales and then linked together
using a class hierarchy approach, with super objects such as informal settlements containing various
physical (e.g., size of dwellings) and contextual (e.g., texture) class descriptors. These descriptors
characterizing the different objects were described using a set of fuzzy logic rules. The procedure used
by Hofmann [69], however, proved complex and data specific, and therefore difficult to generalize
to other areas. Hofmann et al. [118] later utilized an ontology for generalizing rules to extract slums
in Rio de Janeiro, Brazil. However, besides the work of Hofmann et al. [118], very few studies have
investigated the potential of using ontologies to map slums (e.g., [19,119,120]).

Other studies that have applied OBIA to extract information on slums have used an approach
similar to that of Hofmann [69]. Examples of such work include studies by Rhinane et al. [94],
Kit et al. [51], Veljanovski et al. [70]. These studies mainly differ in the segmentation parameters
used for extracting slums as a result of variations in physical characteristics of slums, as captured
in remote sensing imagery. Specifically, segmentation parameters (e.g., weight, scale, color/shape,
smoothness/compactness, and level) affect how an image is initially partitioned into objects for later
refinement and final extraction [69]. Although various combination of values for each segmentation
parameter affects an image scene to different extents, Su et al. [121] suggests that scale is usually the
most influential factor when doing multi-resolution segmentation. A key issue with segmentation
parameters, however, is that they are mainly chosen subjectively [16,122]. Few studies have developed
automated methods for the selection of segmentation parameters for slums, notably Novack and Kux [71].

OBIA, as with other approaches used for extracting slum information, have several limitations.
One issue is that the presence of vegetation and shadows occluding parts or entire dwellings have
been shown to reduce extraction accuracies (e.g., [37,71]). Another recognized issue with OBIA is that
the materials used to construct slum dwellings lead to high spectral noise. For example, unpaved
roads can have similar spectral reflectance to rooftops in slums, leading to challenges in the extraction
of individual dwellings. Also, rules developed to extract slums in an image are usually specific for
that image scene, significantly limiting their application to other geographic areas [86]. As a result,
automated OBIA tend to provide poor results, especially in highly dense areas, due to the intra
and inter diversity of slums [17]. However, for image scenes collected under the same conditions
(e.g., sensor angle and ambient lighting), OBIA scene-based rules can be tailed to map slums at all
three growth stages. This includes the mapping of individual dwellings at their infancy stage of
growth, which becomes increasingly difficult with the desification of dwellings within slums at their
consolidation and maturity growth stages. In order to further allow flexibility in the use of OBIA
approaches for mapping slums, we suggest the need for greater exploration in the use of ontologies
for making such approaches more generalizable to different images and scene conditions.

4.5. Building Feature Extraction

Closely related to OBIA are studies that use digital surface models (DSMs) to study slums.
These approaches focus mainly on the extraction of individual dwellings with the underlying
assumption that height data can be used to distinguish slum dwellings from surrounding objects,
resulting in a 3D model of slums. Most studies applied to slums, however, use optical imagery to
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derive DSM information with very few studies using LiDAR data (e.g., [123,124]). Height information
is extremely valuable for improving population estimates, especially where vertical densification
of dwellings is typical. Optical derived DSM feature extraction is usually a two-part process. First,
aboveground heights are extracted by subtracting a Digital Terrain Model (DTM) from a DSM to create
a normalized DSM (nDSM). The second step involves segmentation of the nDSM [92].

The most common method for extracting DSM information is the use image matching techniques
using stereo images. Such an approach was used by Mason et al. [72] to extract slum dwellings in
the Marconi Beam settlement in Cape Town, South Africa. An nDSM was first created using stereo
images acquired from very high-resolution aerial imagery. That study reported an extraction accuracy
of 67%, along with several limitations related to the method used to delineate dwellings using building
shadow due to their close proximity with each other. This work was further extended by Li et al. [73] to
include color similarity cues to connect edges of dwellings. Although improved results were reported,
as in Mason et al. [72], they assumed a rectilinear model for rooftops, which may not be applicable to
other slum areas where roofing extent does not follow such a pattern.

Several studies have also used active contour models, commonly known as snakes [125], to study
slums. It has been argued that snakes provide a more robust and elastic option for locating the
boundaries of features in remote sensing imagery [126]. Rüther et al. [74] used snakes to extract
dwellings from contours derived from an nDSM of the Marconi Beam and Manzese slum settlements
in Cape Town, South Africa and Dar es Salaam in Tanzania respectively. In that study, an extraction
accuracy of 62% was reported with an overall 81% rooftop shape extraction accuracy. In a similar
study, Mayunda et al. [127] used a radial casting approach to initialize the position of the snake in the
imagery, resulting in an average extraction accuracy of 94% for slum dwellings in Dar es Salaam.

While DSM-based building extraction approaches offer an additional vertical dimension with
which to identify and discriminate slums, several limitations have also become apparent from their
use. According to Ioannidis et al. [92], simple DSM approaches include not only slum dwellings but
also other artifacts such as vegetation, which leads to reduced extraction accuracy. Also, stereo image
matching techniques traditionally used for generating DSM suffer from insufficient ground sampling
data, poor image quality and degradation from shadows and occlusions, which obstruct the outlines
of buildings [72,74,128]. Contour models can alleviate some of these limitations, however, they have
been criticized for first having to be initialized [129], and encounter difficultly in distinguishing
objects with similar height [92]. These issues are expected to vary with differences in physical
characteristics in slums. Nonetheless, given the additional level of discrimination associated with
the use of DSM-based approaches, they provide a great opportunity for monitoring slums during
their infancy and consolidation growth stages. At the maturity growth stage, it becomes increasingly
difficult to penetrate the thick roof canopy of dwellings to extract height information. Future research,
in addition to exploring additional segmentation-based methods for working with height data should
also consider opportunities for reducing the cost and improving the collection of such data (e.g., LiDAR)
over slum areas.

4.6. Data Mining

Of growing interest within the last several years has been the use of data mining approaches for
detecting and mapping slums. Such approaches incorporate tools and techniques to undercover novel
and potentially useful patterns in large quantities of data [130]. Many of the tools utilized in data
mining come from areas such as machine learning and artificial intelligence. Such approaches have
also been applied to slums. Graesser et al. [75], for example, applied a See5 decision tree to a set of
230 variables derived from various statistical approaches to study slums in cities in different parts of
the world. That study reported overall accuracies of 91%, 89%, 92% and 85% for the cities of Caracas,
Venezuela, Kabul and Kandahar in Afghanistan, and La Paz, Bolivia respectively, using all variables.
The authors further show that if the top 10 variables alone were to be used, overall accuracies upwards
of 75% could be achieved. Other decision trees, such as random forests, have also been used to detect
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and map slums in Beijing, China [131], Mumbai and Ahmedabad in India, and Kangali, Rwanda [60].
While in Owen and Wong [87], a decision tree developed using a Gini splitting rule was used to study
slums and formal settlements in Guatemala city, Guatemala. Studies using decision trees generally
report high classification accuracies when used to map slums.

Another data mining approach, pattern recognition, has also been applied slums. Vatsavai [76],
for instance, used a multiple instance learning approach to extract slums from high-resolution imagery.
In that study, a bag of instances model using a multivariate Gaussian function, was utilized for
both training and testing data, and applied to four different geographic locations: (1) Accra, Ghana;
(2) Caracas, Venezuela; (3) La Paz, Bolivia and (4) Kandahar, Afghanistan. That study reported
classification accuracies upwards of 81%, outperforming other classifiers such as random forest trees
and Naïve Bayes classification. Several studies have also applied machine learning (e.g., Support
Vector Machines [132,133]) and optimization (e.g., genetic algorithms [119]) approaches to slums and
have reported overall high mapping accuracies. However, in general, the body of literature in this area
is still rather sparse, as shown in a recent review by Kuffer et al. [15].

Although the accuracy of data mining approaches to study slums tend to be higher than other
methods [15], it is important to understand the various limitations with the use of such approaches.
As very few studies have used data mining tools and techniques to detect and map slums, the ability to
generalize these methods is yet to be fully explored. Most studies reviewed have focused their analysis
on very specific areas with even fewer studies, such as Graesser et al. [75] and Vatsavai [76], applying
methods to different geographic areas. This is particularly important for data mining approaches that
utilize specifically empirically derived parameters using training data [134], making the generalization
of such methods problematic. From an implementation perspective, many data mining tools and
techniques require significant computing resources, especially when working with large datasets.
This can pose a significant challenge, especially to developing countries who often have limited
computing resources. While recent work using deep learning tools to map poverty have been shown
to be of immense benefit in regional and global mapping efforts (e.g., [135]), the output of such
approaches continue to be aggregated at coarse enumeration levels. Given their general need for large
amounts of training data, data mining approaches are better suited for monitoring slums during their
consolidation and maturity growth stages. Future work using data mining to detect and map slums
should further explore other sparse data approaches, along with ensemble-based approaches that
combine different algorithms, for which there has been limited work applied to slums.

4.7. Remote Sensing Data for Supporting Socio-Economic Assessment

While directly extracting socio-economic data from remote sensing has been challenging, such
data has been used to support socio-economic assessments of slums. Socio-economic information
is especially important in rapidly growing areas such as slums where census data is outdated or
non-existent [136]. Among those socio-economic variables often estimated and extensively studied
is population size. The most common approach for estimating slum populations from H/VH-R
remote sensing imagery has been the use of manual photointerpretation (e.g., [37,137,138]). Traditional
methods using photointerpretation are able to resolve individual dwellings with high levels of accuracy.
However, these methods are not very scalable to large geographic areas, thus further highlighting the
need for an automated approach for mapping slum dwellings from remote sensing data.

Information extracted from remote sensing imagery has also been combined with other auxiliary
information, and used for characterizing slums. Niebergall et al. [78], for example, used an OBIA
(Section 4.4) approach to examine various socio-economic variables in slums in Delhi, India. Objects
were first extracted from high-resolution imagery and linked at successive levels of segmentation.
Those objects were used to estimate population and water consumption for the various slums.
These estimates were then compared to field data, with reported accuracies upwards of 80%.
Other studies have also used imagery to extract deprivation (e.g., [139]) and socio-economic status
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(e.g., [79,80]) in slums. However, few studies of this type could be found in the literature, highlighting
the need for greater research in this area.

Similar to other remote sensing approaches discussed above, several limitations have been
identified from studies using H/VH-R imagery for supporting socio-economic assessments of slums.
First, the ambiguity in identifying socioeconomic groups [79], along with the ambiguity in image
classification, can impact the overall accuracy of mapping these groups. Second, socio-economic
(proxy) information extracted from remote sensing data is often difficult to combine with existing
socio-economic data (e.g., census) due to differences in spatial and temporal resolutions of these
data [6]. Third, while many studies have focused on small geographic areas, their applicability to large
geographic areas has been the focus of very few studies, prompting further research in this area. Finally,
while not exclusively used as an approach for classifying slums from H/VH-R imagery, socio-economic
assessment approaches can be used to characterize changes in slums over time. However their use
is limited to studying slums during their consolidation and maturity stages, these growth stages
support more accurate mapping of slums due to their more discernable boundaries in remote sensing
imagery. Future research should further explore different methods for combining remote sensing and
socio-economic data, along with socio-economic data (proxy or otherwise) that can be used in this
regard, a topic that we will be visiting in Section 5.

5. Challenges and Opportunities

As Section 4 has discussed, remote sensing imagery provides many great opportunities for
studying and understanding slums. As it relates to the use of H/VH-R imagery, this data provides
us with the opportunity to detect, delineate and characterize slums. Approaches that have been
used in this regard range from multiscale (e.g., fractal and lacunarity analysis), which mainly rely on
information extracted from remotely sensed imagery, to approaches using remote sensing to support
socio-economic assessments have been used to study slums. All approaches, however, encounter issues
with no one approach significantly and consistently outperforming others in extracting information on
slums. In order to better understand such issues, in Section 5.1 we review the spatial and temporal
distribution of studies that have used H/VH-R remote sensing imagery to study slums. Building on
this review we discuss issues with the sole use of H/VH-R remote sensing images for studying slums
in Section 5.2. Section 5.3 identifies several opportunities for overcoming such issues, highlighting the
role of remote sensing data as complementing existing sources (socioe-conomic or otherwise) rather
than replacing them. Section 5.4 identifies various emerging sources of information, which have the
potential to improve detection and mapping efforts. Finally, Section 5.5 discusses geosensor networks
as conceivable mechanisms for increasing the collection of information on slums.

5.1. Spatial and Temporal Distribution of Slum Studies Using H/VH-R Remote Sensing Imagery

In order to understand the spatial distribution of studies using H/VH-R remote sensing imagery
to study slums, we first exam such studies with respect to their chronological appearance in the
published literature (books, journals and peer reviewed conferences). Figure 1 shows the results of
such a survey, reviewing work from the English published literature using scholarly literature services
such as Thomas Reuters Web of Science, Microsoft Academic Search and Google Scholar, and the
keywords “slum”, “informal settlement” and “remote sensing”. Papers from this search were further
limited to those that specifically focus on the detection and mapping of slums. This search resulted in
72 published studies between 1997 (earliest published study that could be found) and 2016. As Figure 1
shows, there has been a general linear upward increase in the number of published papers using
of H/VH-R imagery (≤4 m spatial resolution). This trend appears to be in line with the increased
availability of H/VH-R imagery to the general public, also shown in Figure 1, and with 79 spaceborne
satellites providing H/VH-R imagery for civilian and research purposes. Linear fitting of both the
number of studies and satellites shows coefficient of determinant R2 values close to 0.8 for each trend
line, an angle of about 5 degrees between both lines, and a Pearson r correlation value of 0.7 (0.313 ≤ r
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≤ 0.887 at 95% CI). Further, contrasting the number of published studies that explicitly use H/VH-R
imagery, reveals that although H/VH-R imagery has been available for over 15 years, to date, it still
remains a largely untapped source of information for slum detection and mapping.
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In addition to the number of published studies, as slums are a global issue, it is also interesting to
explore the spatial distribution of these studies around the world, which is shown in Figure 2. The areas
labeled A, B and C in Figure 2 (South America, Africa and Asia) highlight major regions where H/VH-R
imagery has been used to study slums. Within each region the countries with highest number of studies
are Brazil (South America), South Africa (Africa) and India (Asia). However, this coverage of H/VH-R
studies do not account for the global distribution of slums, as shown in Figure 3. For example, although
slum populations in Lebanon and Pakistan account for 47% and 75% of their urban population [141]
respectively, no studies using H/VH-R imagery were found for slums in these countries.
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Figure 4 shows a more local geographical view of those slums studies shown in Figure 2 at the
administrative level and for each country highlighted in regions A, B and C. This figure illustrates
that studies tend to be focused on very few locations within countries. For example, in India, the
fourteen studies using H/VH-R imagery were distributed across only six administrative districts.
Similarly, for Brazil, the eight studies identified in the literature were spread across only four districts.
Nonetheless, Figure 4 shows that even when a relatively large number of studies are carried out, they
still tend to focus on a relatively small subset of the areas where slums exist, which may not necessarily
represent all slums in that particular country. In Brazil, for example, large slum populations have also
been reported in the districts of Bahia (e.g., [144–146]) and Minas Gerais (e.g., [147]) for which published
studies using H/VH-R imagery have not been found. Similarly, in India, as shown in Figure 5, slums
are not confined to any one state or administrative district, rather, they can be thought of as existing on
a continuum with some locations more susceptible to the presence of slums than others as discussed in
Mahabir et al. [6]. The limited study of some slum areas on the one hand, and the relatively extensive
study of other slum areas on the other, may have significant implications on our ability to understand
slums, their population, and their evolution within the context of their environment.
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Figure 5. Geographic distribution of slums population in India (a) and Mumbai (b) (Data—India
districts [148] and Mumbai wards [149]).

In conjunction with the tendency of current research to focus on specific slum areas, there has also
been a similar trend in the application of analysis methods utilizing H/VH-R imagery to study slums.
Tables 2 and 3 compare peer reviewed published H/VH-R studies in both India and Brazil based on
the approaches that was used for analyzing the imagery data according to the categorization presented
in Section 4. In the case of India, the most frequently used approaches were: (A) multi-scale analysis;
(B) image texture analysis; (C) landscape analysis, and (D) object-based image analysis; while (F)
data mining and (G) socio-economic assessment were less prominent. For Brazil (A) and (D) are the
primary methods of analysis, with only small representation of others. It should be noted that in
both countries the building feature extraction (E) approach was not applied in the published studies
reviewed here. These findings provide both a challenge and an opportunity for the future study of
slums using H/VH-R imagery. In particular, the more selective use of analysis approaches raises the
concern of potential biases in our understanding of slums (as derived from these studies) due to the
tendency to view them only through a rather limited set of analysis lenses, and the potential biases that
may exist in each analysis approach (as discussed in Section 4). At the same time, the underutilization
of other analysis approaches provides several potential research avenues for the study of slums using
H/VH-R imagery. Specifically, it would be of interest to (1) explore the analysis methods that have
not been extensively used in order to better evaluate their performance in various areas; (2) develop
an understanding why specific approaches have been previously preferred while others have been
left unexplored, which may lead towards a set of “best practices” for studying slums using H/VH-R
imagery; and (3) explore the utility of a combined approach that builds on several complementary
analysis approaches for improving the overall performance of the analysis. As can be seen from
Tables 2 and 3, the utilization of more than one analysis approach has not been very common in the
studies reviewed here (6 studies out of 21 studies). In light of what we have discussed above, it would
also be interesting to compare and contrast the different remote sensing techniques applied to the
same slum.
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Table 2. Studies of slums in India using H/VH-R imagery, classified by analysis approach.
(A) Multi-scale analysis; (B) Image texture analysis; (C) Landscape analysis; (D) Object-based image
analysis; (E) Building feature extraction; (F) Data mining and (G) Remote sensing data for supporting
socio-economic assessment.

Studies
Approach

Administrative District Local Area
A B C D * E * F G

Kit et al. [51] X Andhra Pradesh Hyderabad
Kit et al. [150] X Andhra Pradesh Hyderabad

Kit and Ludeke [17] X Andhra Pradesh Hyderabad
Niebergall et al. [78] X X Delhi Delhi

Kohli et al. [19] X X Gujarat Ahmedabad
Kohli et al. [151] X X Maharashtra Pune
Yadav et al. [152] X Maharashtra Mumbai

Shekhar [153] Maharashtra Pune
Baud et al. [34] X X Delhi Delhi

Kuffer et al. [67] X Delhi Delhi
Kuffer and Barros [154] X Delhi Delhi

Kuffer et al. [60] X X Maharashtra Mumbai
Bhangale et al. [155] X Maharashtra Mumbai

Total 3 3 3 4 0 2 2

* No studies using this approach occurred in India.

Table 3. Studies of slums in Brazil using H/VH-R resolution, classified by analysis approach.
(A) Multi-scale analysis; (B) Image texture analysis; (C) Landscape analysis; (D) Object-based image
analysis; (E) Building feature extraction; (F) Data mining and (G) Remote sensing data for supporting
socio-economic assessment.

Studies
Approaches

Administrative District Local Area
A * B * C D * E F G

Filho and Sobreira [63] X Pernambuco Racife
Filho and Sobreira [81] X Sao Paulo Campinas

Amorim et al. [105] X Pernambuco Racife
De Melo and Conci [156] X Rio de Janiero Rio de Janiero
De Melo and Conci [156] X Sao Paulo Campinas

Hofmann [118] X Rio de Janeiro Rio de Janeiro
Leao and Leao [64] X X Rio Grande do Sul Canela

Novack and Kux [71] X Sao Paulo Sao Paulo
Ribeiro [157] X Sao Paulo Embu

Total 6 0 0 2 0 1 1

* No studies using this approach occurred in Brazil.

5.2. Limitations of Remote Sensing in Slum Detection and Mapping

Remote sensing systems capture information along four main dimensions (spatial, spectral,
temporal and radiometric). Ideally, an optimal sensor would be a sensor that has high resolution in
all dimensions. This, however, is not possible due to the various limitations of the sensors and their
platforms, leading to a solution that represents a compromise between these different dimensions.
For example, while thermal remote sensing could be beneficial for studying urban areas (e.g., the use
of band 6 in Landsat 5 [158]), the spatial resolution of such bands is often lower (e.g., 120 m for the
thermal band vs. 30 m for the other bands in Lansdat 5). Specifically, with respect to slums, this
lower resolution imagery is unable to adequately capture information on individual slum dwellings.
Similar tradeoffs in resolutions also exist when analyzing such data due to factors such as the immense
sizes of the datasets involved, the time taken to download them, and the difficulties involved with
data storage [159]. These tradeoffs can affect both the spatial and classification accuracy of slum
mapping applications.

Another limitation of remotely sensed data is that it only captures the characteristics of slums
that affect the radiometric properties of such environments [160,161]. While this may work well for
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some slum properties (e.g., detection of rooftops), other characteristics such as information on the
social strata or cultural aspects of slum populations cannot be directly derived from remote sensing
data. Such important dimensions of slums are therefore not always represented in many studies,
which focus on the use of remotely sensed data alone for studying slums. For example, studies by
Hardoy and Satterhwaite [162] in Peru and Saraiva and Marques [163] in Brazil show that some
slums have clear divisions among land parcels and road patterns similar to those found in formal
settlements. Viewed from remotely sensing imagery, these settlements may be mistaken for formal
settlements. These potential limitations highlight the need for better fusion of remote sensing data
with socio-cultural data in order to capture a more holistic representation of slums and the population
that reside in them.

5.3. Data Fusion of Remote Sensing and Auxiliary Data

In order to develop a more comprehensive view of slums and avoid their representation as a
one dimensional phenomena (i.e., physical characteristics), various attempts have been made to fuse
remotely sensed data with other complimentary auxiliary data. Such an approach can provide a
more accurate description of the phenomena [164,165]. Remote sensing in this regard can further
contribute to social scientific measurements by improving on some measures (e.g., using the derived
spatial extent of a settlement to improve population estimates) while at the same time validating others
(e.g., examining the link between population health and green spaces in cities). This data fusion can
potentially lead to a better understanding of slums, their impacts and the factors that continue to lead
to their persistence on the human and physical landscapes.

Baud et al. [166], for example, combined information at the administrative district level to
map poverty in India using an Index of Multiple Deprivations. Studies by Lo and Faber [167] and
Afsar et al. [168] have also made attempts to fuse both remote sensing and socioeconomic data by
incorporating land cover data. However, such land cover data is often only available at a coarser
classification granularity than what is required for the study of slums. This can lead to loss of spatial
heterogeneity in data [139], as well as loss in visibility of slums if the unit of aggregation is coarse in
comparison to the size of the slums.

Furthermore, even if slums are detected in the data, there still remains the issue of knowing
exactly where they are located and where the extent of their boundary lies if data is too coarsely
aggregated. Statistical inference using such aggregated boundaries can further be strongly affected
by issues including the Modifiable Areal Unit Problem [169], ecological fallacy [170], aggregation
bias [171,172], as well as the small numbers problem [173,174]. Moreover, it has been suggested that
the normative boundaries used for delineating poverty can often lead to spurious autocorrelations
between poverty indicators [33,175].

Many of the challenges in fusing socio-economic and remotely sensed datasets have stemmed
from the different spatial and temporal resolutions of socio-economic data on slums and corresponding
remote sensing imagery. Such issues are expected to continue with the anticipated increase in the
spatial and temporal resolution of imagery, and further highlight the need for higher resolution
socioeconomic datasets. However, obtaining such data often presents a significant resources and
logistical challenge [176]. Even in cases where such data exists, privacy and confidentiality may
inhibit their availability for research [177]. There is therefore a need for developing and tapping into
other complementary data sources that are commensurate with the spatial and temporal resolution of
H/VH-R imagery.

5.4. Emerging Sources of Data on Slums

Web 2.0 and the increase availability of relatively inexpensive, portable location-aware devices
within the last decade has provided new opportunities for collecting geographic information about
slum populations. Some developing countries with large slums populations such as Kenya have
mobile penetration rates of 88%, with almost 75% of the population having access to the Internet in
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2015. About 99% of this internet access comes from mobile devices [178]. While internet penetration
rates are generally low for most developing countries [179], several technology companies, for example,
Facebook with its internet.org project [180], and Google’s Project Link [181] and Project Loon [182] are
working to overcome such challenges in low penetration areas in the near to mid future.

When available, data collected from mobile phones can provide a wealth of information on slums
and their residents. Wesolowski and Eagle [183], for example, examined call logs from the Kibera slum
to determine movement patterns of slum dwellers. That study showed Kibera to be a very dynamic
living space, with slum dwellers moving to different parts of the slum as opposed to remaining at one
residential location. Furthermore, that study also identified various locations where slum dwellers
worked, which the authors suggested were influential in determining where slum dwellers relocate
in and around Kibera. Recent work has also shown that when combined with remote sensing data,
mobile phone data can be used to help discriminate slums from non slum areas [184]. The results of
these studies and others highlight the increasing value of mobile device data as an unobtrusive and
valuable source of information on slum populations.

Related to the increase use in mobile technologies, in recent years, several alternative sources of
spatial and sociocultural data have emerged. Perhaps the most prominent source of these is Volunteered
Geographic Information (VGI [185,186]). Examples of VGI which can support slum detection and
mapping include data collected from Google Map Maker [187], OpenStreetMap (OSM [188]), ArcGIS
Online [189] and Wikimapia [190]. Map Kibera is a prototypical example of the use of VGI for
crowdsourcing slum data. Figure 6 shows an overhead view of the Kibera slum captured from
satellite imagery. Figure 7a shows a map of the Kibera area taken from both OSM and Google Maps.
A comparison of both maps shows that OSM has more intrinsic road information for Kibera. Figure 7b
shows a close-up view of part of Kibera, again both in OSM and Google Maps. As can be seen, OSM
offers a detailed view of Kibera, including information on water points, churches and medical facilities,
while Google maps shows very limited information about the area (e.g., roads and water bodies).
Recent work by Mahabir et al. [191] comparing road data from an authoritative source, the Regional
Center for Mapping for Resource Development (RCMRD), with non-authoritative sources of road data
acquired from Google’s Map Maker and OSM further suggests, that at least for some slums in places
such as Nairobi, Kenya, OSM data provides the most up-to-date road data available. Few studies,
such as Kuffer et al. [192], have since explored the use of OSM data for mapping slums.
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In conjunction with VGI, social media services such as Twitter and Flickr have emerged as
a source of slum related geographic information [194]. While users do not explicitly contribute
geospatial information through these services, user contributed content often includes ambient
(crowdharvested) geospatial information (AGI [195]) from which information about slums can be
curated. An example of such information is shown in Figure 8, which depicts the locations of
geotagged Flickr images in the Kibera slum area. These images were obtained from a search requested
to the Flickr application programming interface (API) using the keyword “slum”. As shown by
Jenkins et al. [196], such information can be used to extract discernable socio-spatial patterns for
different population groups.



Urban Sci. 2018, 2, 8 23 of 38
Urban Sci. 2018, 2, x FOR PEER REVIEW  23 of 38 

 
Figure 8. Geotagged Flickr images with word “slum” in their description (background imagery 
source: ESRI [189]). Images A, B and C represent different views of Kibera embedded within the 
Flickr data. 

One source of slum images which can be found on social media services such as Flickr is slum 
tourism. Since the mid-1990s slums has attracted travelers, mainly from other countries, who have 
visited slums through guided tours in some of the poorest and most disadvantaged parts of large 
cities around the world [197]. It is estimated that close to 40,000 tourists visit slums in Rio de Janeiro 
annually, whereas in Cape Town, South Africa, the number of tourists is as much as seven times this 
amount [198]. This trend resulted in the emergence of the slum tourism industry, which now offers 
online registration to such tours [199]. Figure 9 shows an example of this growing industry, where a 
tourist company offers guided tours through the Dharavi slum in India. It is important to note that 
this trend has a positive impact on slums through increased awareness of conditions in slums and 
the positive economic activity on the local economy [197]. With respect to this paper, we introduce 
slums tourism as a source of data since such companies provide the location of slums, while at the 
same time, tourists also contribute by posting content of visits to slums to online social media 
platforms, which can then be currated. 

Figure 8. Geotagged Flickr images with word “slum” in their description (background imagery source:
ESRI [189]). Images A, B and C represent different views of Kibera embedded within the Flickr data.

One source of slum images which can be found on social media services such as Flickr is slum
tourism. Since the mid-1990s slums has attracted travelers, mainly from other countries, who have
visited slums through guided tours in some of the poorest and most disadvantaged parts of large
cities around the world [197]. It is estimated that close to 40,000 tourists visit slums in Rio de Janeiro
annually, whereas in Cape Town, South Africa, the number of tourists is as much as seven times this
amount [198]. This trend resulted in the emergence of the slum tourism industry, which now offers
online registration to such tours [199]. Figure 9 shows an example of this growing industry, where a
tourist company offers guided tours through the Dharavi slum in India. It is important to note that
this trend has a positive impact on slums through increased awareness of conditions in slums and the
positive economic activity on the local economy [197]. With respect to this paper, we introduce slums
tourism as a source of data since such companies provide the location of slums, while at the same
time, tourists also contribute by posting content of visits to slums to online social media platforms,
which can then be currated.
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Although VGI and AGI type data provides many opportunities for mapping and better
understanding slums, there are also several limitations with the use of such data. One limitation is
that many of the platforms that provide such data require access to computers or mobile devices with
an internet connection. While every year more users are being connected to the Internet, in most
developing countries, however, a large proportion of the population still continues to lack access
to broadband internet. This makes the collection of such data difficult for mapping features on
a global scale [201]. There are also issues with limited access to the Internet in general in many
developing countries, a problem popularly termed the digital divide [202]. This may lead to an over or
underrepresentation of certain groups within the population based on their socioeconomic, cultural
and age characteristics [203,204].

Another known issue with crowdsourced geospatial data is its quality. As such data is often
not governed by rigorous quality assurance and control measures, the resulting data is often
characterized by uneven quality, or even lower quality when compared to data collected using
traditional methods [205]. Although many studies have shown that an acceptable level can be obtained
from using crowdsourced geospatial data (e.g., [191,206,207]), special care must be taken to ensure that
such quality is acceptable for the intended application.

Finally, research on VGI, and in particular AGI, has also identified privacy issues with the use
of such data. While AGI contributors may be indifferent or even encourage the use of geospatial
information in the content they generate, contributors are often concerned with maintaining their
personal privacy. Such privacy concerns stem from the very nature of geographic information—as VGI
and AGI data is generated by particular contributors, a distinct spatio-temporal contribution pattern
may emerge. For instance, a VGI contributor who makes contributions only in the vicinity of their
residence, or a Twitter user who sends geolocated tweets while commenting between home and their
workplace. As many social media users do not give their explicit consent to such personal information
sharing [208], unintentional personal information disclosure may occur, leading to a possible breach of
personal privacy (e.g., [209]).
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In line with the emergence of VGI and AGI data, recent years has also seen an increase in the use
of unmanned aerial systems (UASs), also known as unmanned aerial vehicles (UAVs), remote piloted
aircraft systems (RPAS) or “drones”, used for collecting spatial data a wide range of applications.
Various factors have helped drive the upward growth in the success of the UAS industry, including
maturity and affordability [210], and the development of a commercial UAS services industry [211].
Given these trends, UASs are emerging as a potential tool for slum mapping, particularly due
their availability to be quickly deployed and provide fine spatial and temporal resolution [212].
These advantages have already been demonstrated in crisis mapping and humanitarian assistance [213].
In line with these trends, it is not just UASs themselves but the plethora of low cost sensors that can
be retrofitted on them (e.g., hyperspectral and LiDAR), which can supplement and enhance more
traditional aerial and spaceborne data [214,215]. Some recent work has also begun to explore the use
of UASs for slum mapping (e.g., [216]), which highlight the strong potential of this new data source
for slum mapping, warranting the need for further research in this area.

5.5. Geosensor Networks

An emerging trend within the last decade has been the use of geosensor networks (GSNs),
a system of interconnected sensors distributed over a large geographic area, with each sensor or group
of sensors collecting different sets of information about the environment [217,218]. The goal of GSNs
is the integration of diverse information in order to inform a more complete understanding of the
geographic phenomenon being monitored. Sensors in the network are usually small, low powered
devices, that can be both static (e.g., mounted traffic cameras) or mobile (e.g., onboard UASs) and
communicate wirelessly in an ad-hoc manner [219]. The application of GSNs to slums, however, is still
relatively new.

Several developments within the last decade has made use of GSNs applicable for collecting and
monitoring slums. One factor is the increase availability of mobile devices. This has been in part
due to increase competition in this area by both large and small technology companies, and with
the technology that governs these devices increasingly becoming more miniaturized and complex,
offering an increasing number of services with added flexibility with each new revision. Added to this,
their decreasing costs has made mobile devices almost ubiquitous in some countries. Many countries,
including some countries with large slum populations (e.g., South Africa), now have more mobile
devices than people [220]. Increasingly, in slums, mobile phones are being adopted not only as a way
of keeping in touch socially, but also for informing critical situational awareness. For example, in the
Kibera slum in Nairobi, Kenya, a mobile pilot project, M-Maji, allows slum dwellers to dial a cost free
number and receive updates on water availability in Kibera, its price, and its quality. This service saves
slum dwellers valuable time in locating water resources, which can be as much as several hours in
some cases [221].

An innovative project similar to that of M-Maji is M-Pesa, a low cost mobile banking system, which
allows Kenyan residents to transfer money [222]. M-Pesa transactions can take place between slums
dwellers for the informal provision of services or between slum dwellers and other non-slum dwellers.
For example, slum dwellers can make payments to the Government or private truck-borne suppliers
for services such as the provision of water. Many slum dwellers utilize M-Pesa because it is easy to
use, allows for flexibility in payment, and is perceived by slum dwellers as a safer way to transfer
money compared to conventional options (e.g., by post). The cost of using M-Pesa has also been found
to be as much as 27% to 68% lower when compared to other available options for transferring money
in some instances [223]. Over 73% of Kenyan residents use M-Pesa with reported GDP contributions
of more than 30% in 2011 [224]. The success of M-Pesa has led to similar project implementations
in several other African countries [225], India [226] and Bangladesh [227], among others. Similar to
the many analyses stemming from the use of big data sources such as the Oyster Card database in
London (e.g., understanding the movement patterns of people in big cities—e.g., [228]), mobile data
from projects such as M-Pesa could be used to better understand the dynamics of slums dwellers and



Urban Sci. 2018, 2, 8 26 of 38

their interactions with the environment. Such analyses are also important for overcoming the lack of
research on population dynamics in less developed countries in general [229].

As previously mentioned in Section 5.4, an internet connection is usually required when taking
part in VGI projects. Besides the involvement of large technology giants working to overcome this
challenge, various other companies and organizations are also working to improve visibility of
underrepresented mapped areas. OsmAnd [230], for example, has developed an offline application,
which uses OSM for mobile navigation and the viewing of maps. Users can also use this application
to upload new content to the OSM web platform when an internet connection becomes available.
Similarly, the American Red Cross has developed an portable version of OSM, which can be used
offline to assist staff and volunteers when deployed in the field during humanitarian missions [231].
Moreover, given the variety and lower cost alternatives to the typical desktop computer (e.g., Pi Zero
and Chip miniature computers for less that USD $10), its becoming increasingly easier for low cost
computing technology to be adopted in slums.

Another occurring trend in support of the implementation of GSN for slums is the increasing
number of mobile and non-mobile devices alike, which are becoming increasingly smart, that is, there
is underlying technology embedded allowing for the remote collection of data and communication
between such devices. This is part of a larger initiative to create smart or self aware cities, which
can integrate various forms of communication technologies and sensors for managing all of a city’s
assets [232]. Added to this, with the Internet of Things allowing for the interconnection of devices
using Web 2.0 technologies, many opportunities can arise for collecting large amounts of information
on slums. For example, information on air temperature and quality, the location and price of water at
different access points, along with movement patterns of slum dwellers can be collected and used to
inform a more comprehensive view of slums. Given that slums are not expected to disappear anytime
in the near to mid future, the collection of such information is important to better address the specific
needs of slum dwellers, informing more appropriate policies, which can lead to a better quality of life
for slum dwellers.

6. Discussion and Conclusions

Today almost 1 in 3 people in cities in developing countries live in slums [4]. These communities
are often characterized as being socially and economically vulnerable, with most slum dwellers living
in substandard housing and having a low quality of life compared to other population groups in
society [2]. For some slums, their large spatial footprint and the irregular pathways that run through
them is immediately discernable in overhead imagery of cities, while for smaller slums their spatial
footprint may be overshadowed by other city elements. The living conditions under which most slum
dwellers live are of serious concern to many governments, especially those in developing countries,
which are charged with ensuring the health and well-being of their people [6]. Some well-known
slums such as Kibera in Nairobi, Kenya have also attracted worldwide attention through online
news and social media channels, thus putting additional pressure on governments to improve the
living condition in their slums. With many developing countries often lacking the infrastructure
and resources to adequately address their own slum issues, the growth and expansion of slums has
escalated [6], making slums almost ubiquitous in some developing countries.

Tackling the issue of slums requires up-to-date and reliable information on their location, spatial
extent and evolution over time. Data on slums was traditionally sourced from census and population
housing surveys, which continue to be both costly and time consuming campaigns. The spatial and
temporal relevancy of this data has also been questioned when used to map slums. Guided by these
and other shortcomings, remote sensing has emerged as a feasible and cost effective means for the
collection of large amounts of data on slums as discussed in Section 2. In this regard, H/VH-R remote
sensing imagery is especially beneficial for mapping slums at the individual dwelling and settlement
levels. Further, besides spaceborne and aerial systems, many other sources of H/VH-R imagery have
emerged making such data very accessible for research and mapping of slums (e.g., UAS [216] and
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hot air balloons). Moreover, this data can also be used for mapping and monitoring the various
growth stages of slums (as discussed in Section 3). Such information is invaluable in providing suitable
intervention to slums based on their different growth stage.

While many studies have used H/VH-R imagery to map slums, the approaches used tend to be
adhoc. Further, given that the characteristics of slums can vary in different geographical contexts, and
even within the same slum, the role that location and local context has in slum detection and mapping
needs to be further explored. Towards this goal, this paper provided an in depth geographical analysis
of approaches that have used H/VH-R imagery to map slums. Further, because the characteristics of
slums can also vary over time, we evaluated methods with respect to their suitability for mapping the
various stages in the growth of slums. Such analysis allowed us to better identify and characterise
challenges with using H/VH-R imagery to detect and map slums.

Our analysis reviewed approaches used to detect and map slums using seven categories:
multi-scale (Section 4.1), image texture analysis (Section 4.2), landscape analysis (Section 4.3),
object-based image analysis (Section 4.4), building feature extraction (Section 4.5), data mining
(Section 4.6), and socio-economic measures (Section 4.7). The results of our analysis suggest that
there is no single universal robust approach for detecting and mapping slums. As more H/VH-R
sensors become available, the diversity of approaches that are used to map slums is also likely to
increase (as discussed in Section 5.1).

Delving further into the geographical distribution of studies using H/VH-R imagery to study
slums showed that they tended to concentrate in very few locations within specific countries.
Many countries with very large slums populations were also found to have very few or no studies.
As such, this may limit our understanding of slums globally and we risk overspeciallizing approaches
to a specific slum context in lieu of a more hollistic analysis.

As we move forward it is important to recognize the potential benefits of newly emerging data
sources for mapping slums that go beyond H/VH-R. Such data sources include the use of VGI
(Section 5.4) and other social media sources (e.g., Flickr and Twitter), for detecting and mapping
slums. VGI and social media sources, in the broader sense, can be considered as part of a wider GSN
framework as humans act as passive and active sensors (Section 5.5). These new data sources are likely
to become even more important in the future as GSNs are becoming prevalent with the evolution of
smart cities around the world.

Slums are a global challenge and are likely to remain a part of the urban landscape. It is hoped
that the analysis presented in this paper will help urban researchers and decision makers to better
understand the tools currently available, as well as emerging opportunities for detecting and mapping
slums. The results of this study highlight a critical area of further work towards improving the
utilization of H/VH-R remote sensing imagery for detecting and mapping slums: the need for a
benchmarking framework for evaluating slum mapping algorithms. The results of such benchmarking
could then be used to create a set of best practice guidelines for selecting the most suitable methods for
mapping slums in a given locality, and foster the creation of new approaches to address this challenge.
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