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We focus on organizational structures in covert networks, such as criminal or terrorist net-
works. Their members engage in illegal activities and attempt to hide their association and
interactions with these networks. Hence, data about such networks are incomplete. We
introduce a novel method of rewiring covert networks parameterized by the edge connec-
tivity standard deviation. The generated networks are statistically similar to themselves
and to the original network. The higher-level organizational structures are modeled as a
multi-layer network while the lowest level uses the Stochastic Block Model. Such synthetic
networks provide alternative structures for data about the original network. Using them,
analysts can find structures that are frequent, therefore stable under perturbations.
Another application is to anonymize generated networks and use them for testing new
software developed in open research facilities. The results indicate that modeling edge
structure and the hierarchy together is essential for generating networks that are statisti-
cally similar but not identical to each other or the original network. In experiments, we
generate many synthetic networks from two covert networks. Only a few structures of syn-
thetics networks repeat, with the most stable ones shared by 18% of all synthetic networks
making them strong candidates for the ground truth structure.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The randomized generation of synthetic networks is often used for testing which properties of a given network depend on
its structure and features [3,10]. Such a use has become popular since Erdós and Rényi introduced the random network
model [11]. It generates an edge between each pair of nodes with a fixed probability p. The resulting networks are highly
random as expected. Yet, despite interesting mathematical properties of this model, later research discovered that random
networks rarely arise in nature or engineering practice.

The more advanced models proposed later include the scale-free network model [2] and its variants that represent the
structures of many social and naturally arising networks. Another one is the Stochastic Block Model (SBM) [18] which
extends the random network model by grouping nodes into blocks. The probability of an edge between a pair of nodes is
determined by the probability of connection between the blocks to which the nodes belong. This model produces block
structures resembling those arising in real networks but limits the differences among degrees of individual nodes located
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in the same block. This weakness is addressed by SBM variants, such as the degree planted SBM [20] or the degree-corrected
planted partition model [25].

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [21] generates synthetic networks with the desired heterogeneity
of the node degrees and block size distribution. The generated networks are customized using such parameters as power law
exponents for the node degrees, the block size, and the density of edges within the same block to mimic real networks. These
networks are often used to test community detection methods. A model presented in [34] generates synthetic networks by
rewiring edges in real-life networks. The more edges are rewired, the blurrier the blocks become, allowing only the increas-
ingly more stable blocks to prevail.

The Hidden Community Detection (HICODE) model [17] identifies hidden communities by first performing a standard
community detection method and then intentionally weakening the detected communities by removing or reducing the
weight of edges. This allows weaker communities to be detected. Unlike our approach, the proposed method neither
accounts for node hierarchy, nor preserves total edge connectivity in a rewired network. Another generative model creates
hierarchical multi-layer networks that are often used to represent the hierarchical management structures, but does not con-
sider reliability of a group or edge structure of the network [28].

In general, we are interested in on-line social networks that have been supported by the growing number of computer
platforms and companies. The activities in such networks generate massive amounts of data, to which, however, access is
increasingly limited due to privacy concerns. We are particularly interested in covert (a.k.a. hidden) networks, such as ter-
rorist and criminal networks. The common trait of such networks is that their members try to hide their participation and
illegal activities, as well as the network’s structure. Often essential interactions of participants are covert, and their non-
essential interactions overly visible, making essential ones difficult to observe. Law enforcement in most of the countries
is limited in the means of collected data by privacy laws protecting citizens from unrestricted surveillance. As a result,
the data about covert networks is often incomplete and partially incorrect. This creates a challenge in interpreting or discern-
ing the structure and activities of such networks. An additional challenge arises from the inaccessibility to researchers of
data about networks under investigations. Only for a fraction of networks whose members were prosecuted in the court,
such data becomes publicly available.

The main contribution of the network generator introduced here is creating synthetic networks that are structurally sim-
ilar to real networks, but with anonymous nodes that are interconnected or clustered differently than nodes in the original
network. The direct use of such anonymized networks is to provide a safe but statistically equivalent substitute for real net-
works for research on analytical tools for covert networks. A large number of such networks generated from a single covert
network can serve as a set of alternative interpretations of the structure of that network. The distribution of frequencies of
these structures enables analysts to quantify statistically expected outcomes of operations on the covert networks. A high
frequency of presence of a particular synthetic structure among synthetic networks makes it a likely candidate for the
ground truth structure.

The rest of the paper is organized as follows. In Section 2, we overview the organizational aspects of covert networks and
describe the ways in which our generative model accounts for them. In Section 3, we present the data sets defining two cov-
ert networks discussed in the paper and explain how these sets differ from data sets defining open social networks. The
detailed description of the proposed method is presented in Section 4. The results and the methods used to compare the gen-
erated networks to the corresponding original network are discussed in Section 5. The conclusion is discussed in Section 6.
2. Modeling organizational aspects of covert networks

Discovery and monitoring of covert networks often rely on getting access to information flows among nodes suspected to
be involved in network activities. This flow may involve wiretapped telephone interactions, message exchanges, recorded
conversations and meetings, or copies of written documents. We refer to an organization represented by such a network
as covert and to the nodes as members. Using community detection, we discover what we call groups of members who inter-
act among themselves more often than with other members. We prefer this term over communities, which usually denotes
the nodes having casual relationships, clusters, which refer to subsets of nodes with similar values for selected attributes,
blocks that are used in the context of SBM model.

In small organizations, groups could be independent of the organizational structure of the network, but more often they
have a hierarchical structure for management nodes. The number of hierarchy levels depends on the organization size. In
covert networks, the hierarchical structure is important since law enforcement interdiction success vitally depends on cor-
rect recognition of the leadership roles in a crime organization. For this reason, our model explicitly assigns to each node its
place in the organizational hierarchy. In addition, each group is represented by two parameters, one defining edge densities
inside a group, and the other from this group to any other group. This extends also to densities of edges from a group leader
to its subordinates, and, separately, to other nodes. Given an original network, the generator individualizes it by randomly
rewiring edges of its groups and its management hierarchy [28]. As a result, our model combines two network models: SBM
for groups and hierarchical network for higher level management structure.

Most of the previously proposed synthetic network generators rely only on one network generative model. For example,
in [30] the authors propose a network generator that creates synthetic multi-layered networks. A network generator pre-
sented in [16] implements small-world social networks with the desired high clustering coefficient, while [23] presents a
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generator of a dynamic scale free network with the given exponent cwith the minimal divergence from the scale-free model
at each size of its evolution. Another network generator described in [4] creates dynamic networks with the prescribed group
structure.
3. Data and metrics

To present our generator in action, we use the Caviar and Ciel datasets that are publicly available [24]. The former defines
a network representing the drug smuggling West End Gang in Montreal, Canada, using data collected from 1994 to 1996.
This gang was active in trafficking hashish and cocaine. During the investigation, police repeatedly confiscated shipments
of drugs, but made no arrests until the investigation ended. The collected data mainly consists of the lists of phone calls made
among gang members. Every two months, investigators were creating a snapshot of the network, in which each edge rep-
resents the calls made between two nodes during the corresponding two months and the edge weight is equal to the number
of these calls. In total 11 snapshots were collected. The snapshots allow us to observe the network reactions to the shipment
confiscations, and to the changes in positions of members in the network occurring between snapshots.

In the case of the Caviar network, we know which nodes had some management roles from the publicly released court
proceedings. For example, node N1 (see Fig. 1) was identified as the leader of the hashish group, and node N12 as the leader
of the cocaine group. Fig. 1 shows more nodes in management roles in the Caviar groups. Still, the community detection algo-
rithm alone did not assign many low degree nodes to any group [1]. We also present the results obtained with the Ciel data-
set [24], which defines a network representing an illicit drug transportation crime organization that was engaged in
smuggling hashish from Jamaica into Montreal. The data were collected from May 1996 to June 1997 and defines a network
with weighted edges representing the volumes of nodes’ interactions obtained from the records of telephone calls and con-
Fig. 1. Illustration of our model integration of the stochastic block model (SBM) with the hierarchical multi-layer network model in the Caviar network.
Nodes marked with the same color belong to the same group. Nodes placed at the same hierarchy levels play the same roles in the management of this
network.

Table 1
The relative betweenness centralities of the management nodes of the Caviar and Ciel networks reveal their different priorities in managing a criminal
organization.

Network Caviar Ciel

Node identifier N1 N3 N12 N76 N1 N2 N10

RBC score 0.430 0.180 0.303 0.078 0.591 0.641 0.015
Rank of the score 1 3 2 4 2 1 7
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versation surveillance. Only key managers of the network groups are identified. Nodes N1, N2, and N10 all took part in lead-
ing the network. None of the ground truth groups were listed.

For both networks, we use the Louvain community detection algorithm [6] to find groups and the relative betweenness
centrality that we use to identify nodes involved in managerial roles. Since criminal networks often have sparse connectivity
because of attempts to hide network activities, we execute a version of the Louvain algorithm for graphs with undirected
edges. For this execution, we temporally transform directed edges of the generated networks into undirected ones, summing
their weights for pairs of nodes which have two opposing edges connecting them.

Covert networks may prioritize either efficiency or security, but not both. The betweenness centrality of a node measures
a fraction of the shortest paths of information flow between all pairs of nodes passing through this node [32]. A normalized
version of this metric, called relative betweenness centrality, limits its range to [0,1]. We use it for ease of comparison of the
results. We conclude that the structures of the Caviar and Ciel networks are fundamentally different. The Caviar network
prioritized efficiency. This is indicated by the highest relative betweenness centrality scores of the management nodes,
which are N1, leader, and N3, N12, N76, managers, among all nodes in the Caviar network (cf. Table 1). The implied easy
access to these nodes from others supports high efficiency of information flow in the network, but not security for the
managing nodes. In contrast, in the Ciel network, the leader has limited connections to direct subordinates. Consequently,
the leader, N10, has a very low relative betweenness centrality (RBC) when compared to the manager nodes, N1 and N2,
(see Table 1) even though some management role was plausible for him [24].

We chose the Caviar and Ciel datasets for our study because they were intensively analyzed using public data released
during court proceedings [1,5,31]. We show that synthetic networks generated by our generator for both networks are sim-
ilar to the original ones. This is important because only pieces of the ground truth are available for covert networks under
investigation.
4. Implementation of the BWRN generator

4.1. Overview

The process of running the BWRN generator on a given network requires two inputs. The first assigns to each node its
place in the management hierarchy, and if a node has a management position, a list of its direct subordinates, and its mem-
bership in a group. Nodes with a management position may not have peers, in which case it will be considered a single node
group. The second input assigns to each edge identities of the groups to which its endpoints belong. This step creates proto-
edges that are randomly assigned nodes from the relevant groups in the process of a synthetic network generation.

4.2. Applications of BWRN generator

The first application of our generator is to enable sharing data in sponsored research, where a sponsor collects and owns
sensitive or proprietary data while the sponsored researchers need realistic networks to develop efficient tools for network
analytics. Thus, data sharing requires proper separation and abstraction of structural information about the network from
the sensitive personal and operational information. A data owner initiates this process by creating three lists of nodes,
groups, and nodes’ management roles. Then, the generator further transforms node ids into numeric, randomly assigned
ids, clusters nodes into groups, and computes statistics about edges and their weights within and across those clusters.
Hence, the description of the original networks passed to researchers is succinct and void of any personal data. The output
of the generated networks follows the same format as is required for the input.

The generator may enable researchers to develop and test software for covert networks using the generated synthetic
networks instead of inaccessible to them real data covert networks because of security and privacy concerns.

The most novel and important use of the generator is as a tool for network analytics on the original network. Studying the
generated synthetic networks that are statistically similar to a given covert network is useful in two ways in new network
analytics. Synthetic network structures that are infrequent among synthetic networks are unlikely to be close to the ground
truth structure for which the frequent ones are good candidates. However, a large number of such candidates indicates the
need for more data to decrease ambiguity about the analyzed covert network.

4.3. Generating groups in covert networks

Generating weighted networks has received a lot of attention over the last decade. Many of the proposed models aim to
produce weighted networks that have properties similar to real social networks. In [36,33,19], weighted network models,
based on Barabási’s preferential attachment model [2], are proposed with the goal of generating weighted networks with
power-law degree distribution, positive degree correlation, and high clustering coefficient. In [23], a growth model that pre-
serves the power-law degree distribution with nodes dynamically joining and leaving the network is proposed. Another
model that generates weighted networks that meet user defined criteria, such as symmetry, clustering, and positive degree
correlation, is proposed in [29]. Rather than user defined criteria, generated networks can be based on real input networks, to
generating weighted networks that maintain the power-law degree, degree correlation, and high clustering coefficient of the
390



Table 2
Notation table.

Bðn; pÞ Process of n Bernoulli trials with success probability p
d Node degree
E Number of directed edges
Eg Maximum number of directed edges among nodes in group g

Ei;j Number of directed edges from gi to gj
gi Group i

gsi ; g
e
i Groups with starting and ending nodes of edge i

– gi The number of all nodes not in a group gi , and hierarchy < sðiÞ
k Weight of generated edge
n Number of nodes in the network

nsðn;pÞ Random number of successes in Bðn; pÞ
nðdÞ Number of nodes with d degree
pa w� pBwB

pB Probability defining the variance of the generated weights
sðiÞ Node directly superior to node i
w;wi Weight of a single edge, weight of edge i
wB bw=pBc
W Vector of wi ’s of a weight of edge i

WS;WU Sum of weights of edges, sum of unique weights of edges

Wi;j Sum of weights of edges from gi to gj
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real networks [22,8]. In [13], Fortunato provides an authoritative review of the state of the art in community detection. The
review covers many generative models and provides a more in-depth explanation of them for interested readers. It also
demonstrates the poor performance of these models in replicating the community structure of the original network. All
the discussed above models do not inform their rewiring processes about the hierarchy or group structure of the original
network. Information about both of these aspects of a network enables the BWRN generator to rewire edges preserving inter-
nal connection densities within groups and between leaders and their subordinates. Hence, the synthetic networks created
by the BWRN generator not only have an edge structure statistically similar to that of the original network, but also their
group structures and organizational hierarchies are similar.

Social networks often have directed weighted edges to represent intensity of interactions measured in frequency of calls,
messages, or meetings. Before our work, random weighted graphs were generated by WRG model [15]. Let WS denote the
sum of weights of all edges and Eg the maximum number of edges we can generate among subsets of nodes. In WRG, the
edges’ weights are generated by running Bernoulli trials with probability p ¼ WS

WSþEg . The first failed trial stops the runs.

The number of successful trials before this failure defines the weight of the generated edge. This process gives rise to the
geometric distribution of edge weights.

We introduce here a new approach, called Bernoulli Weighted Random Network (BWRN) model, see Algorithm 1 for pseudo
code, and Table 2 for notation used. It uses two parameters. One is a vector of the weights wi’s of edges in the original graph
sorted in descended weight order, and the other is the probability pB that controls the variance of the generated weights. The
process of generating edges starts with the first, heaviest weight and progresses down the vector toward the smallest weight.
Given the currently processed weight wi, an associated weight is computed as wB ¼ bwi=pBc. For each edge weight wi in the
original graph, we randomly select a weight in the range ½0; dw=pBe�.

This design yields a distribution of weights with probability of choosing weight k, where 0 6 k 6 dw=pBe defined as:
1 Ind
pwðk;pBÞ ¼
ðwBÞ!

ðwB�kÞ!k!p
k
Bð1� pBÞwB�k if k 6 wB

w� pBwB for k ¼ wB þ 1ifpBwB < w

(
ð1Þ
As the result, the average sum of weights of all edges created by this process is the same as in the original network.
Indeed, the expected weight from Eq. 1 is pBwB þ ðw� pBwBÞ ¼ w.

The parameter pB defines probability that the edge of weight w will not be generated, which is ð1� pBÞwB if w ¼ pBwB and
ð1� pBÞwB ð1�wþ pBwÞ otherwise, so it quickly decreases with increase of w and pB. With pB > 0:9 even edges with weight 1
have a low chance (< 1%) to be dropped. An interesting trade-off arises for slightly lower values of pB. For example, with
pB ¼ 0:875, which we used for computational experiments here, about 10% of such edges will not appear in the generated
network but a similar fraction of edges will increase their weight to 2, strengthening cohesiveness of some groups.

The variance of the distribution of the weights generated for an edge with weight w in the original data is
wð1� pBÞ þ paðpB � paÞ � wð1� pBÞ[12], so it grows with increase of w but decays with increase of pB

1. Thus, selecting large
pB will make generated synthetic networks more similar to the original one, while decreasing it would have opposite effects.
This feature of the model is essential for covert networks, which have both missing and incorrect edges (e.g., edges connecting
a member of a Crime Organization (CO) to a person outside of it). Analysts involved in CO investigations can use an estimate of
eed
PwB

k¼0k
2pkð1� paÞ þ k2 � pkpa þ ð2kþ 1Þpkpa ¼ wð1� pBÞ þw2 þ paðpB � paÞ. Hence VarðpB;wÞ ¼ wð1� pBÞ þ paðpB � paÞ
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levels of this deception and select a value of pB that would rewire enough edges to add the hidden connections and remove the
incorrect ones, but not enough to disassemble the crime groups. For example, analysts can monitor whether the known CO
members are losing connections to other members, which would indicate that pB is too low.

Our model allows edges to be weighted to accommodate differentiation of edge densities within groups at the same level
of hierarchy (e.g., among peers) than across the hierarchy (e.g., between the group leader and a subordinate). This enables
modeling flexibly information flow intensities among managers and subordinates, to prioritize information flow efficiency
among peers, or opposite to prioritize safety of managers.

4.4. Implementation of BWRN model

.

Algorithm1:BWRN model
392
Input: vector W; group gsi ; g
e
i ; int E, real pB 2 ð0;1�;
function nsðn; pÞ; process Bðn; pÞ;

Comment: all symbols are defined in Table 2

Sort proto-edges in the order of groups they connect and their descending weights

for i = 1 to E do

wB ¼ bwi=pBc

randomly select a pair of not yet connected nodes in groups gsi ; g

e
i

wg
i = ns(wB; pB)
if pBwB < w then increase wg
i by ns(1, w� pBwB)
end if

end for
We consider two possible methods of computing a function nsðwB; pBÞ. The first method selects randomly a pair of not yet
connected nodes and runs up to wb Bernoulli trials with probability of success being pB until the first failure. If wb trials are
successful and pBwB < w, the method runs one more Bernoulli trial with probability pa ¼ w� pBwB. The weight from such a
run is equal to the number of consecutive successes in those trials. The edge is not created when the first Bernoulli test fails.
The complexity is OðEþWSÞ, where WS is the sum of all weights in the network and E accounts for the trial that yields the
first failure. This could be costly for large networks that are also dense.

The second method is to precompute the probabilities of the number of successes with Bernoulli trials. This needs to be
done once for the given number of trials and the selected probability of a success. Since both of these values may be reused
for several networks, the cost of precomputing may end up amortized over such networks. Its complexity is OðEþWU=pBÞ,
where WU is the sum of all unique weights in the network and E accounts for trials arising from inequality
0 6 dwi=pBe �wi=pB < 1. Most often, OðWU=pBÞ 6 OðWSÞ. Yet in practical terms, in social networks only edges with low
degrees repeat frequently, so the advantage may not be large. More gain can be expected from amortization. Given the pre-
comomputed probabilities of success and the value selected uniformly randomly from the range of ð0;1�, a binary search for
the number of successes corresponding to this random value has the complexity OðEþP

W log2ðwiÞÞ, where E arises because
0 6 dlog2ðwiÞe �wi < 1. This is significantly lower than the complexity OðWS þ EÞ of the first method.

4.5. Detecting groups in the generated networks

To test the accuracy of our synthetic network generator, we ran the Louvain community detection algorithm [6] on all the
generated networks and compared the generated groups to the groups in the original network. We also tested the perfor-
mance of our approach using another algorithm called SpeakEasy [14]. It yielded similar results, indicating that the results
do not depend much on the selection of the specific community detection algorithm.

We observe that in the Caviar and Ciel networks, the original and generated groups often do not fully match. There are
several reasons for such differences. First, datasets for covert networks are incomplete and may not have data about many
undetected edges. Second, important nodes are often so highly interconnected that they may belong to several different
groups. For example, in Caviar, nodes N1 and N3 belong to the same group in the original graph, but N3 has so many con-
nections to other groups that the generator occasionally assigns it to them. For similar reasons such miss-assignments may
happen to the managers. At the same time, such a miss-assignment may signal diverse roles that such a node plays in the
network. Hence, comparative analysis of groups discovered in the synthetically generated networks may shed a new light on
the operations of the original covert network.

We also detect the network hierarchy levels to reveal the structural properties of the generated networks. We use the
relative betweenness centrality, which is easy to compute, as a hierarchy level measure because in networks there is a strong
correlation between the hierarchy measures and betweenness centrality scores [27]. Comparing the nodes with high relative
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betweenness centrality in the generated network and such nodes in the original network enables us to measure howwell the
generated networks preserve leadership hierarchy.A Combined Score (CS) measures the overall similarity of generated net-
works to the original one, by taking the product of the Group NMI Score (GS) and Jaccard Leadership Score (LS), as defined in
Eq. 2.
CS ¼ GS � LS ð2Þ
4.6. Steps for generating synthetic networks

The processing of the input data for our generator starts with computation of probabilities of existence and weights of
edges for the generated network. We use two models to assign randomized weights to the weighted edges. Both methods
classify the edges into several classes and generate edges and weights for each class separately. The first class includes inter-
nal edges of a group gi of size jgij at the same level of management hierarchy, so including members but not superiors of the

neighbors. In such a case, there are Ei ¼ jgijðjgij � 1Þ directed edges. We denote the sum of their weights as Wi. The second

class includes edges across the members of two different groups gi; gj. There are Ei;j ¼ jgijjgjj such edges from gi to gj and Ej;i in

the opposite direction. We denote the sums of their weights asWi;j;Wj;i. The next class includes edges from a superior, sðiÞ, to
the members of its group, gi, and from the group members to this superior. There are EsðiÞ;i ¼ Ei;sðiÞ ¼ jgij of such edges in each

direction. Their sums of weights are denoted as WsðiÞ;i;Wi;sðiÞ. Let j– gij denote the number of all nodes not in a group gi, and

with lower hierarchy than s(i). We define the class of edges from the superior of group i to – gi nodes as EsðiÞ;:i ¼ j– gij in
each direction, with the sum of weights denoted WsðiÞ;:i.

Next, the management roles are assigned to the nodes. Our model allows for an arbitrary number of management hier-
archy levels. Yet, given that both Caviar and Ciel networks are composed of small groups, we set here the limit for their hier-
archy levels at three. The number of nodes assigned to each hierarchy level higher than one depends on the total number of
groups at the immediately lower level. The third level of management consists of the highest authority node in the local net-
work. Recall that we refer to such a node as a leader, and to second level nodes as managers, while the first level of hierarchy
is composed of the remaining nodes, called members, organized into groups. Managers serve as intermediaries between the
leader and the members. The review of the literature reveals that the majority of small companies have a ratio of four
employees per manager [9]. This is a bit smaller than in case of covert networks, such as Caviar, where this ratio is close
to six. The plausible reasons for this difference include self-motivation of the members for doing their tasks, as well as keep-
ing a fraction of the organization members interacting with the leader small for safety reasons.

Not all groups have to be supervised through hierarchical management. We refer to such a group as independent. A group
of small size and a low fraction of reciprocal connections is likely to be independent. An example is the money-laundering
group in the Caviar network that might be regarded as independent. Its members have only outgoing edges targeting the
outside nodes. Thus, members of this group do not have incoming edges from any other node in the network.

4.7. Baseline network generator

To get a better baseline for network accuracy than the Erdös-Rényi random network, we built a straightforward extension
of SBM by supporting weighted directed edges with integer weight. It takes as input lists of network nodes, edges with inte-
ger weights, and groups in the original network. The first step is to count, for each group, the sum of weights of all edges
inside this group, and then edges of this group leading to and from each other group. These sums become probabilities
by dividing them by the sum of weights of all the network edges. Using the built-in numpy [26] random choice method,
the baseline generator picks a pair of groups, including those in which the source and target groups are the same. Then, a
node from the source group and a node from the target group are selected repeatedly until the selected nodes are different,
thus avoiding self-loops. Using the created set of probabilities, we select the probability for the selected group and execute a
Bernoulli trial with this probability. On success of the trial, the weight of connection between these two nodes is increased by
one. This entire process is repeated until the total weight of all edges becomes the same as in the input network. The last step
is to run Louvain community detection on the resulting network and compare the output with the original network groups.

4.8. Flowchart and time complexity of the BWRN generator

Fig. 2 summarizes the process of generating synthetic networks using the proposed generator. Although we start with a
single real network, the synthetic networks generated from it will all be unique. Some generated networks may have the
same group structure, but they will all have a unique set of generated edges, so after node anonymization, it would be dif-
ficult to recover the original input network from the single synthetic network. Thus, the anonymized synthetic networks can
be shared with researchers that operate in open research laboratories for testing and validating software on networks that
are similar to real covert networks.

The time complexity of executing the BWRN generator presented in Fig. 2 can be established as follows. The input data
consists of the management hierarchy, group structure, and the list of proto-edges of the network to be rewired and may be
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Fig. 2. The graphic framework showing the process of generating networks using the proposed generator. Circles represent the processing stages of the
generator, rectangles stand for datasets, and hexagons show computational centers. The red color denotes secure processes and data with access limited to
within the secure processing facility, while the blue color denotes open access data and facilities.
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already included in the data associated with the real network to be rewired. Alternatively, the management hierarchy can be
uncovered using the relative betweenness centrality with complexity of Oðnðn lognþ EÞ. This is by factor of n the most com-
putationally intensive part of the BWRN generator execution, but it can be avoided if ground truth about the management
hierarchy is uncovered by investigation. The group structure could be found by Louvain (or any other community detection)
algorithm with complexity Oðn lognÞ.

The network rewiring process consists of two main steps. The first sorts the network proto-edges according to groups
they connect and in descending order of their weights. The complexity of sorting is OðE logEÞ. The second step runs the
BWRN generator, on every proto-edge of the rewired network. Since each proto-edge is rewired once, the complexity of this
step is OðEþP

i2W logðwiÞÞ, where wi denotes the weight of edge i.
5. Results

We test the network generator by generating T ¼ 1000 synthetic networks and taking the average scores to avoid any
statistically insignificant outliers. We use the Louvain community detection algorithm to find the group structure of each
generated network. Then, using the Normalized Mutual Information (NMI) metric [7], we compare groups detected in the
generated networks to groups in the corresponding original network.

5.1. Results with caviar and ciel datasets

To fully evaluate how similar are the synthetic networks to the original network used as input to the generator, we mea-
sure not only similarity of group structure, but also similarity of identified management nodes. We find all management
nodes by their high relative betweenness centrality in all compared networks. We use as threshold 90% of the relative
betweenness centrality metric of the node whose rank among the highest values of this metric is equal to the number of
management nodes in the original network. For both datasets, we used weighted edge generators to create three sets of syn-
thetic networks. For the first set we used our Bernoulli Weighted Random Network model, for the second set, the Weighted
Random Graph model, while for the last set, the weighted SBM described in Section 4.7.

Table 3 contains results of measurements of the first aspect of similarity that synthetic networks generated by BWRN
model are by factor of two more similar to original group structures than groups in networks generated with WRG model.
The BWRN and weighted SBM baseline models performed close to each other.
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Table 3
Results show NMI scores from comparing the groups in networks generated from the Caviar and Ciel networks to the groups in the original networks. The
results show performance of BWRN generator, and generators using the Weighted Random Graph model and the weighted SBM baseline model.

Original Network Caviar Ciel

Generator Generator Weighted Generator Weighted

BWRN WRG SBM BWRN WRG SBM

Mean 0.815 0.356 0.850 0.800 0.513 0.761
Median 0.839 0.365 0.739 0.883 0.567 0.751
Min 0.415 0.088 0.358 0.734 0.288 0.551
Max 0.953 0.565 0.883 1.000 0.692 1.000

Fig. 3. The presented Caviar networks depict a) the groups in the original network and those detected in the synthetic networks with similarity that is (b)
highest, (c) lowest, and (d) average.
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This means that the management structure is a differentiating factor in comparing these two generators. It is evaluated in
Table 4 that demonstrates the importance of leadership detection for keeping the synthetic distinct but close to the original
network. The results obtained using Jaccard metric [35] show that the networks generated using our Bernoulli Weighted
Random Network model preserves the group structure and leadership hierarchy twice as well as the baseline generated net-
works and nearly four times better than those using Weighted Random Graph model. Moreover, the unweighted SBM gen-
erator performs much worse than the baseline with the weighted SBM. In summary, our BWRN generator better
differentiates between roles of leaders and members within groups while performing at least slightly better than others
on community detection. These results verify the strength of our generator in preserving groups and hierarchy within the
generated networks.
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Table 4
The first row of the results shows group structure similarity from Table 3, the second the leadership similarity, and the last row shows the combined Score that
is the product of the first two scores. In all three rows, the best score is shown in bold font.

Metric BWRN WRG Weighted SBM

Group NMI median (GS) 0.839 0.365 0.739
Jaccard Leadership (LS) 0.681 0.402 0.308
Combined Score (CS) 0.571 0.146 0.281

Fig. 4. The histogram of meta-graph degree distribution for exact matching of groups in the generated networks. The x-axis defines the node degree d,
while the y-axis shows nðdÞ, the number of nodes with d degree.
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5.2. Stability of group structures of covert networks

Generating networks statistically similar to the investigated real network enables us to analyze how stable is the struc-
ture of this network. These networks represent sets of small perturbations of the original network interconnections. If many
generated synthetic networks are structurally similar to the original network, the latter network is stable and resistant to
perturbations. On the other hand, if the structure of the original network is not stable, only a few synthetic networks will
be structurally similar to the real network.

We apply this analysis to the Caviar network, by generating G ¼ 1000 random synthetic networks, and comparing their
structures to each other, and to the structure of the Caviar original network. We start this analysis by creating a meta-graph,
nodes of which are the generated networks, so the size of the meta-graph is G ¼ 1000 nodes. For each node, we draw an
undirected edge between this node and any other node in the meta-graph with a matching group structure. We create
two versions of the meta-graph. In one, edges represent an exact matching. In another, the edges show flexible matching,
which allows up to one node difference in each group for drawing an edge. Fig. 4 shows the resulting distribution of the node
degrees in meta-graph with exact matching. We find that the original network’s structure repeats ten times for exact match-
ing among 1000 generated synthetic networks. Thus, this structure is not very stable. It is sensitive to small perturbations in
node connectivity in the generated networks. In contrast, we also find that the most frequent group structure occurs 177
times with exact matching, and 310 times for flexible matching. It also happens to be the most similar to the group structure
of the Caviar graph. The synthetic network with this structure is shown in Sub-Fig. 3(b). Moreover, each of the top ten most
frequently occurring structures repeats at least 20 times for exact matching, and at least 206 times for flexible matching. The
remaining generated networks have either unique structures, or structures that were similar to only a few generated
networks.

From a practical perspective, the identification of stable groups in a criminal organization is important. It will allow ana-
lysts to concentrate on group structures that arise frequently and thus represent plausible interpretations of data collected
about the network. Using the meta-graph of generated networks, analysts can find such frequent structures.
6. Conclusions

We first introduce the BWRN model capable of dealing with weighted and directed edges. It generates networks whose
total weight of edges is close to that weight in the original graph, and yet their numbers of edges can differ. It creates a the-
oretical basis for BWRN generator whose novelty includes the ways we generate synthetic networks, and the ways we use
them for network anonymization and new network analytics. The generator uses the Stochastic Block Model to create group
structures alternative to those existing in the original network. To preserve the organizational aspects of the original net-
work, our generator uses hierarchical network model.

We thoroughly tested the generator on two real covert networks, Caviar and Ciel. To measure the similarity between the
generated networks and the original one, we use the well-known Louvain community detection algorithm. Applying the NMI
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and the Jaccard metrics, we measured the results, which demonstrate the high levels of similarity among generated net-
works and the original one.

We conclude that accounting for groups and a management hierarchy of a network is essential for generating synthetic
networks that are statistically similar to the original network.

In future work, we plan to add the fourth step of network generation going beyond the original graph to enable its hier-
archical network expansion. One way to accomplish it is to regenerate, using BWRN generator, any part of the original net-
work multiple times at any level of hierarchy and provide additional levels of management hierarchy if needed. Such an
extension will allow the researchers and analysts to study the evolution of covert networks.
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