
Dash cryptocurrency deanonymization

Foteini Baldimtsi, Joao Brandao, Panagiotis Chatzigiannis, and Ioanna
Karantaidou

George Mason University

Abstract. Cryptocurrency payments form a transaction graph. The
goal of anonymity techniques is to obfuscate this graph in a way that the
money flow cannot be traced. The basic suggested practice for users in
order to gain some privacy is to generate fresh addresses to store their
coins all the time. Heuristics on Bitcoin, a cryptocurrency that only
offers this type of pseudonymity, allow for address clustering. If a clus-
ter ends up uniquely identifying a user, this corresponds to a successful
deanonymization attack.
In this report, we examine such clustering techniques on Dash, an ex-
tension of Bitcoin that applies mixing to increase anonymity. We im-
plement the well-known Bitcoin clustering techniques on Dash and we
extend these techniques to attack any mixing protocol as long as it does
not hide the payment value.

1 Introduction

1.1 Cryptocurrency basics

The blockchain. A blockchain is an append-only distributed ledger that is main-
tained through a peer-to-peer network. It consists of sequential blocks, each
containing the hash of the previous block such that they form a verifiable chain
and any alteration becomes immediately apparent.

Transactions. Coins are stored in addresses. An address is associated with a
spending secret and a value. In order for a transaction to be valid, the following
have to hold: the spender has to prove knowledge of the spending secret and the
input address(es) must hold the necessary value. If a transaction is valid, it ends
up in a future block.

Account-based vs UTXO model As mentioned above, in order for a transaction
to be valid, the address must hold the necessary value that the spender wishes
to transfer. There are two models to enforce this requirement: the account-based
and the Unspent Transaction Output (UTXO). The account-based model uses
accounts as addresses and keeps track of each account’s balance as a global
state. The requirement is satisfied as long as the sending value is less or equal to
the balance. The moment of the transaction, the spent value is deducted from
the account and the global state is updated. The most popular account-based
cryptocurrency is Ethereum.

2 Authors Suppressed Due to Excessive Length

In the UTXO model, each address is associated with a fixed value (in some
cases, it can be increasing but never decreasing). An address is valid and associ-
ated with a value if it is the output of a previous valid transaction that appears
on the chain. Since the value never decreases, the address is only used once and
then is removed from the UTXO set. The requirement “the input address(es)
must hold the necessary value” is satisfied as long as the address has not been
used as an input to a past transaction, or in other words, double-spending has
not occurred. Some popular cryptocurrencies that work in the UTXO model are
Bitcoin, ZCash, Monero and Dash.

Since blockchain transactions can be publicly verified, it means they do not
need to happen under the supervision of a trusted entity (e.g. a bank). While
decentralization is the main motivation for users to transact using cryptocur-
rencies, some users also prefer them as they give them a sense of anonymity
(especially in cryptocurrencies that work in a complete permissionless, decen-
tralized model). However it is well known that user anonymity is not guaranteed
- in fact, given the public nature of the blockchain, there are several techniques
for analysis and user deanonymization. In the next sections we review these is-
sues. We use first cryptocurrency (Bitcoin) as the starting point to illustrate
how user anonymity can be degraded in several cases.

1.2 Bitcoin and pseudonymous addresses

Fig. 1: A transaction-centered graph

As Bitcoin emerged, it was widely be-
lieved that it offered complete anonymity.
As opposed to traditional banking sys-
tems, users could trivially create an
account and transact without needing
to provide any personal information or
identification. A Bitcoin’s address was
a pseudonym, completely de-associated
from one’s physical identity. However in
practice, a user might conduct an in-
person payment in BTC. In order to min-
imize this privacy leakage, Bitcoin users
are encouraged to use a new address ev-
ery time they need to store coin. This way, even if one of these addresses gets
linked to their identity, the rest of the transactions remain private.

However, even if the addresses of a user are randomly picked and seemingly
unrelated to each other, it has been observed that Bitcoin (as well as other
cryptocurrencies, even anonymous ones like Monero mostly in their early stages)
is susceptible to coin tracing.

In the next paragraph, we describe how a simple case of coin tracing can be
conducted on a transaction graph. In Section 2.1, we are going to revisit this
example and point out what coin tracing ability means even for cryptocurrencies
that are anonymous, as opposed to just pseudonymous like Bitcoin.

Dash cryptocurrency deanonymization 3

1.3 An example of coin tracing via graph analysis

Graph with transactions as nodes. An example of immediate data representation
with graphs can be found in Figure 1. It is immediate because blocks are already
organized as sequence of transactions with input, output addresses. The graph
nodes here are the transactions (each represented with a transaction id on the
block explorer) and each transaction node follows after all nodes that include its
inputs as their outputs.

Graph with addresses as nodes. As a meta-analysis, one can derive a graph
with addresses as nodes using the blockchain information. An example is given
in Figure 2 where one can see the initial coin graph that corresponds to the
transaction graph of Figure 1. An edge (X,Y) denotes there is a possible move-
ment of money from address X to address Y or else, X is an input to the same
transaction where Y is an output.

Fig. 2: Probabilistic coin
tracing

Fig. 3: Probabilistic coin
tracing with side infor-
mation

Fig. 4: Deterministic
coin tracing

Fig. 5: A coin-centered graph related to graph of Figure 1

Often, by using available side information such as physical identity reveal
(such as a public service or an exchange website) or the address values (if pub-
licly visible), one can decide a coin’s route. For example, let us assume that
an outside observer can see that address A transferred all coins to address B
and address F to address G (Figure 3). That means that any other edge (A, Y),
(X,B) and (F, Y ′), (X ′, G) are connected with probability 0 and can be removed
from the graph. In Figure 4 the route of coins in addresses B,C is determin-
istically defined. One can see that although addresses are randomly generated,
relationships between them can be found by analyzing the transactions graphs.

In the following sections we discuss mitigation techniques that have been
suggested in order to prevent coin tracing. Pseudonymity and successful coin
route obfuscation are believed to lead to user anonymity.

Network level attacks Another way to correlate random pseudonymous addresses
to each other is via a network level attack [9, 14]. A peer-to-peer network par-
ticipator has been found to be able to link pseudonyms to IP addresses and, as

4 Authors Suppressed Due to Excessive Length

a result, to each other. Attacks have been designed to even overcome the pro-
tection offered by the use of Tor [8]. Since this is a stronger adversarial model
attack, we will only focus to de-anonymization attacks that only exploit publicly
available blockchain information.

1.4 Anonymity mechanisms

We define Anonymity as the property of breaking the linkage between transac-
tions and hiding the sender’s and receiver’s identity [4]. We note that this is a
requirement in order to avoid the coin tracing technique explained in Section
1.3.

The first step for anonymity is pseudonymity, i.e. the disassociation be-
tween address and physical identity that is offered by Bitcoin. On top of that,
anonymity involves techniques to hide the receiver’s identity (meaning that every
transaction output is often enforced to be a fresh, unique address), the sender’s
identity (divided in set anonymity and full anonymity) and finally, to hide the
transferred amount (Confidential Transactions).

In order to implement the above techniques, the following cryptographic
primitives are widely used on top of pseudonymous addressing: ring signatures,
mixers, cryptographic commitments, Zero-Knowledge Proofs (ZKPs) and stealth
addresses. We briefly explain each primitive.

– A Ring Signature is a special type of digital signature that consists of a ring
of public keys, a message and the signing algorithm output denoted by σ.
The signing algorithm takes as input a secret key that corresponds to one
of the public keys of the list(called the ring). If σ verifies to 1, a verifier
is convinced that such a secret was used during the signing, but cannot
distinguish which public key it corresponds to.

– A Commitment scheme is a primitive that allows one to commit to an ele-
ment in a hiding way, meaning that no information can be inferred about the
committed element by the commitment alone. The committing entity uses
a secret, revealed during the opening phase. The scheme must be binding,
i.e. the committing party must be unable to find a secret that opens to an
element different that the one that was initially used.

– A ZKP is a protocol by which a prover can prove to a verifier that they
hold a witness that satisfies a public statement (often called a relationship
R). The goal is that no other information must be reveal to the verifier
other than the prover’s knowledge of a witness (and not the witness itself no
matter the protocol’s repetitions).

– A stealth address is a way to generate receiver’s addresses. There are two
ways to generate a fresh, random-looking address: one is when the receiver
generates and communicates the address to the sending party. A stealth
address solves this communication overhead and also keeps the two parties
unlinked on the network level. A sender can generate a stealth address using
the recipient’s public key such that: stealth addresses are unlinkable to each
other and they can be spent with the receiver’s unique spending secret.

Dash cryptocurrency deanonymization 5

Stealth addresses are widely used to the anonymous cryptocurrency Monero
to protect receiver’s privacy.

The final anonymity-enhancing technique is the so called mixers. A mixer or
a tumbler is a service that takes a set of identifiable coins as an input, mixes them
with each other and outputs a set of coins with the following goal: to obfuscate
the connection between each mixing’s output to the original source coin. Mixers
can be categorized into centralized that make use of a central entity to assist in
the process such as Tumblebit [12] and to decentralized such as CoinJoin [1].

Although attempts have been made to apply anonymity techniques on account-
based cryptocurrencies such as Ethereum [6], multiple concurrency issues arise
and attempts to overcome them lead to performance degradation.

Therefore, the most widely used anonymous cryptocurrencies are on the
UTXO setting. In the next section, we present such cryptocurrencies with their
main properties.

1.5 Popular anonymous cryptocurrencies

In this subsection, we give a brief overview of the most popular and widely used
anonymous cryptocurrencies. Although third party mixing services can be used
on top of other cryptocurrencies as well, here we include currencies that with
built-in, inherent anonymity properties. The reason behind this distinction is
because their privacy level can be easier quantified as it is less strictly based on
user behavior. The top anonymous cryptocurrencies in terms of usage, ordered
by popularity are the following:

Monero (XMR). It is the most popular anonymous cryptocurrency with mar-
ket capitalization ranking 24. In terms of anonymity, it uses the set anonymity
technique by applying the following primitives: stealth addresses for recipient
privacy, ring signatures for sender anonymity and confidential transactions for
transfer value hiding. A confidential transaction can be further down analyzed
to the following primitives: a commitment to the value associated with a public
address and a proof of equality between the sum of the input committed val-
ues and the sum of the output committed values. Double-spending avoidance is
enforced by a unique key image value generated for every spent input.

Dash (DASH). Dash is the second most popular anonymous cryptocurrency
with market capitalization value ranking 48. It uses the Bitcoin core protocol
and applies centralized coinjoin mixing with the same denomination (meaning
coin value). A detailed description of how Dash works is given in Section 3.

ZCash (ZEC). ZCash is the third most popular anonymous cryptocurrency
with market capitalization value ranking 52. It is the evolution of the Zerocoin
protocol [17] that was designed on top of Bitcoin. It consists of a pool of non-
private transparent addresses and a pool of shielded addresses. In order to spend

6 Authors Suppressed Due to Excessive Length

from a shielded address anonymously, one has to construct a ZKP for the fol-
lowing statement: there is an address in the pool for which the spender knows
the spending secret associated with it, the balance is maintained and the value
of the input is transferred to the value of a freshly generated output. The pool
consists of all addresses every existed on the ledger, therefore ZCash offers full
anonymity. The ZKP is instantiated with zk-snarks, a protocol that offers suc-
cinct proofs with short verification time (independent of the pool size) with the
cost of expensive setup and long public parameters and expensive proving time
(linear to the pool size). Double-spending avoidance is enforced with the use of
nullifiers, a unique value that is public and corresponds to one spent coin. The
spending ZKP includes a proof of correctness for the computation of the corre-
sponding nullifier. Any third party can verify the proof and perform a lookup
to the nullifier set (represented as a Merkle tree) to make sure that the address
used has not been used as an input to a previous transaction.

1.6 Related work

We present published work on deanonymization techniques on plain Bitcoin,
anonymization techniques offered as services on top of Bitcoin or cryptocurren-
cies that extend Bitcoin, such as ZCash.

[16] designs attacks on Bitcoin privacy. The authors focus on the publicly
visible flow of money. As a firs step, they identify addresses controlled by some
known real-world user. Such users are mining pools, exchange banks, vendors,
etc. They then apply well-known heuristics to form clusters of addresses that be-
long to the same user. If such clusters overlap with any of the known addresses,
the whole cluster gets mapped to its physical identity. To emphasize the contri-
bution on pseudonymous cryptocurrency clustering, the others apply the attack
on criminal activity discovery. If clusters overlap with any address from the list
of Bitcoin thefts, their transaction activity can be traced.

[15] defines the notion of “taint resistance” as an anonymity measurement.
The authors analyze Coinjoin’s taint resistance criteria satisfaction and explore
the weaknesses that come from Coinjoin misuse. They explore a passive adver-
sarial behavior in the case where transferred values are distinct and in the clear
also an active adversary that influences the participants distribution. They run
an experimental measurement of taint resistance indicators that can be achieved
under these adversarial models.

[19] performs another Bitcoin anonymity analysis. The authors define the
two kinds of networks that appear in a pseudonymous cryptocurrency, the trans-
action/address network and the user network. They then integrate off-network
side channel information in their analysis. Behaviors such as donations, volun-
tary identity disclosure, TCP/IP packet pushing order, etc, are used with the
goal to integrate the two networks and derive money flow graphs. They present
their passive analysis deanonymization results as flow graphs.

A quantitative analysis on Bitcoin is conducted in [20]. A static analysis is
run on the whole chain to extrapolate statistics such as the number of addresses

Dash cryptocurrency deanonymization 7

per entity (derived by transaction input heuristics), incoming BTC amount dis-
tributions, balance distribution, transaction numbers etc. Such works are used as
a base for attacks that use user behavior analysis as side information to conduct
deanonymization.

[5] formalizes Bitcoin-based clustering techniques and the notion of “ad-
dress unlinkability” as an anonymity measurement. More specifically, clustering
heuristics such as common input addresses and change address identification are
explored. The authors also define the notion of “User Profile Indistinguishabil-
ity” as another anonymity metric. In order to evaluate privacy according to their
second metric, the authors conduct a user-behavior analysis where they incor-
porate information such as geographical location and time zone. Finally, they
evaluate their metrics by using ground truth data and simulated data.

In [18], traceability of Bitcoin transactions under the use of an anonymiza-
tion service is investigated. Their attack applies to a high level idea of a mixing
service. They exploit the fact that distinct coin values are used during the mixing
and the fact that such values are posted in the clear, i.e. no confidential trans-
actions are used. Throughout the experiments, no inside information possessed
by any central mixer is used, except public blockchain data.

[10] exploits the side information of web cookies to cluster addresses of the
same user. They extend their attack to work on top of transactions that take
place after a multi-round mixing protocols run. Specifically, Coinjoin is assumed
as the mixing protocol instantiation. The side information of their attack is not
available through the public ledger, their adversary is rather third companies
such as shopping sites, the advertisement industry, etc. Examples of such infor-
mation are the payment time, the payment address, the price (transferred value)
and in cases of intrusive trackers, even the user’s real identity.

[23] revisits all clustering heuristics suggested on Bitcoin. They present a
clustering implementation, starting with a ledger crawler and clustering imple-
mentation. On top of clusters, the authors perform an entity relationship anal-
ysis: a heuristic algorithm for identifying relationships between Bitcoin entities,
for example group activities between communities on the network.

[11] is reasoning on the effectiveness of clustering algorithms towards deanonymiza-
tion. The authors derive statistics about how often privacy recommendations are
ignored by users. Privacy-harmful actions are indentified from real data. Such
actions are: address reuse instead of fresh address generation per transaction,
super-clusters created by major services and predicted individual user behavior
that leads to an expected slow incremental growth of address clusters.

[7] extends clustering techniques to also include the so called “unknown
transactions”. Such transactions include the null value as an input or output
address and although disregarded by known clustering techniques, they often
end up as part of the chain. The authors approach clustering by using single-
source directed unlabeled acyclic weakly connected graphs. They then connect
graphs through an isomorphism to link them to a unique user behavior.

In [13], the anonymity guarantees of ZCash are being investigated. A large
portion of ZCash does not use shielded pool address, therefore it behaves like

8 Authors Suppressed Due to Excessive Length

plain Bitcoin. The authors repeat clustering attacks on the non-private part
of ZCash chain. Finally, they study the interaction of such non-private coins
with the shielded pool and more specifically, ZEC withdrawal and deposit. They
assign large spikes in withdrawl and deposit activities to the founders and min-
ers of ZCash by applying user behavior analysis. For transactions solely inside
the shielded pool, they probabilistically assign transactions to hacker activity
according to the number of inputs and outputs which is the only information
leaked by a cryptocurrency that offers full set anonymity for both sender and
receiver.

Panos: [?] also: https://link.springer.com/chapter/10.1007/978-981-16-6554-7_
31 https://www.inderscienceonline.com/doi/abs/10.1504/IJSN.2021.119391

2 Coinjoin

Coinjoin [1] is a mixing technique that takes place in one transaction. The high
level idea is the following: n addresses with their corresponding values are given
as input and n addresses with their values as outputs. The sum of inputs must
be the same as the sum of outputs. Digital signatures must be included signed
with the secret key that corresponds to each input (each participant proves that
they know the spending secret). The signed message is the whole transaction
information.

The idea is rather simple, the challenges of Coinjoin are with concern to how
each participant will communicate their pair of input-output addresses without
revealing the mapping to other users and how the amounts used are not going
to leak any information to the users and an outside observer [15].

Solutions have been suggested in literature but have not yet been imple-
mented. [22] suggests the use of DC nets as an anonymous broadcast technique
that can be used for decentralized implementation of Coinjoin. [21] suggests
the use of Confidential Transactions on top of Bitcoin and Coinjoin in order
for users to be able to mix arbitrary amounts. All these solutions regarding
decentralization and multiple denominations come with extra computation and
communication cost.

2.1 Graph node Clustering and Mixers

In Section 1.3, we show how one can apply side information (using the public
ledger or the network level) to derive a coin’s flow by iteratively removing graph
edges. A coin’s flow in a system with sequential rounds of mixing corresponds to
mixed coin deanonymization. Note here that the coin’s flow corresponds to the
same user creating fresh addresses and moving the funds. Their goal is to break
the link between where they acquired the coins and where they spent them.

In the following sections we show how to use heuristics in order to iteratively
apply clustering techniques on Dash’s coin graph, a cryptocurrency with inherent
mixing. If such clustering extends to different blocks, we view it as a first step
to mixer-based cryptocurrencies deanonymization.

https://link.springer.com/chapter/10.1007/978-981-16-6554-7_31
https://link.springer.com/chapter/10.1007/978-981-16-6554-7_31
https://www.inderscienceonline.com/doi/abs/10.1504/IJSN.2021.119391

Dash cryptocurrency deanonymization 9

3 Dash cryptocurrency

As already mentioned, Dash is the second most widely used cryptocurrency
with built-in anonymity mechanisms. More specifically, it incorporates the idea
of efficient mixing with various levels of security guarantees according to the
number of mixing rounds. For a privacy-concerned user, there is a trade-off
between anonymity level and the amount of fees paid.

Dash evolved from Darkcoin [2], a fork on Bitcoin and got rebranded as Dash
[3] on 2015. Compared to Bitcoin, it introduces one more entity: the Masternodes.
The pre-existing entities that are shared with Bitcoin are the users, i.e. the
senders and receivers that appear in a transaction and the miners, i.e. the entities
that take care of the maintenance and development of the blockchain ledger by
verifying transactions, forming blocks, run a consensus protocol and agree on
the ledger’s content. In a Proof-of-Work ledger like the one run by Bitcoin, the
trust model about miners is the one that assumes an honest majority.

Masternodes. A Masternode is a trusted entity that in addition to relaying mes-
sages on the peer-to-peer network and verifying transactions, offers the following
additional services: building and approving the two different types of transac-
tions that are named InstantSend and PrivateSend and vote on the governance
of the Dash ecosystem.

Profits and Governance. Cryptocurrency profits are collected in the form of
transaction fees. They are alocated to fund honestly behaving Masternodes, min-
ers and future project ideas.

Being a Masternode has the following requirements: to submit 1000 DASH
as a collateral and maintain that amount as unspent funds in the system and
to provide a proof of service to the network. Masternodes that fail to meet the
requirements are marked as inactive.

The proof of service involves the Masternode’s assistance with Dash’s two
types of transactions: InstantSend and PrivateSend.

InstantSend transactions are typical Bitcoin transactions but with a shorter
validation type. Typically, a transactions is tagged as valid after a number of
blocks after the block it was mined. This holds because there is a non-negligible
probability of block reordering. A reordering can lead to a double-spending at-
tack.

A user has the option to ask for a transaction of type InstantSend. This
corresponds to the following sequence of actions: Masternodes accept in real-
time and mark the transaction as valid. If takes at least 60% of the Masternode
quorum to approve the transaction, sign and broadcast it through the network.
An approved InstantSend transaction guarantees that it will be mined into a
future block and also that any future transaction is going to use the updated
UTXO set and double-spending attacks are not possible.

PrivateSend. A PrivateSend transaction is initiated by a privacy-concerned user
and it gets implemented as multiple Coinjoin rounds. In order to mitigate Coin-

10 Authors Suppressed Due to Excessive Length

join privacy and performance weaknesses we explained in Section 2, Dash’s Coin-
join implementation has the following characteristics: it is centralized, meaning
that there is a trusted entity (here the Masternode) that communicates with the
participants and forms the Coinjoin transaction and it uses fixed denominations,
meaning that each Coinjoin mixing allows for values in the clear but enforces
the same denomination in order to preserve privacy. We note that the mixing
output is an address that belongs to the sender, i.e. a user sends coins back to
themselves through a mixing process before they perform an actual payment.

We now present a PrivateSend transaction on one user’s side (we use the
notion of wallet to denote one user). On a high level, it follows the following
steps:

1. The user initiates a PrivateSend transaction and chooses the amount to be
mixed. They also pick the number of Coinjoin rounds they wish. More rounds
correspond to higher privacy guarantee.

2. The wallet checks if there are enough funds, picks the required addresses that
sum to the amount and initiates a denomination creation transaction. This
transaction breaks the coins into the following denominations: 0.0100001,
0.100001, 1.00001, 10.0001 and 100.001 DASH until no more partition is
possible.

3. At the same time, during the denomination creation transaction, the wallet
allocates a collateral amount. The computation of the collateral amount is
probabilistic and is also a function of the number of requested rounds.

4. For each denomination value, the wallet repeats the following process: picks
at random one of the available Masternodes sends a private message with
the number of inputs and the denomination to be mixed.

5. The Masternode waits until mixing requests from at least 3 different users are
collected. Once this step is complete, they message back the corresponding
wallets with a confirmation.

6. The wallet waits until they receive a confirmation message by the Mastern-
ode. It generates fresh output addresses (as many as the inputs it is going to
include in this mixing) and relays a message back with the input and output
addresses.

7. Once the Masternode collects all the data from all participating users, it
forms the transaction and sends it back to the them.

8. Once the user’s wallet receives the Coinjoin transaction data, it signs using
each of the inputs’ secret keys and sends back the signatures to the Mas-
ternode.

9. When all participating wallets complete their signatures, the Masternode
submits the transaction to the pool in order to get posted in a future block.
A separate collateral reduction transaction might get posted after a number
of Coinjoin transactions. It is not immediately correlated to the Coinjoin
transaction itself.

10. The wallet repeats the process for the rest of the coins. For each denomina-
tion and each round, it picks a new Masternode at random.

Dash cryptocurrency deanonymization 11

The collateral. For all participants, one in every 10 rounds, their collateral ad-
dress will appear on the blockchain as a transaction input with a new transaction
output that has reduced value. The value difference will be published as fees.
This works an incentive for users to behave honestly. If they abort, there is a
high chance for their collateral to be reduced even if they do not receive back
any complete mixing service.

4 Standard clustering algorithms and heuristics

4.1 Clustering heuristics

– Common-input-ownership heuristic: if a transaction has more than one input
then all those inputs are owned by the same entity.

– Address reuse: Using same address for multiple transactions (opposite of
change address).

– Change transaction/change address: Spending input in its entirety.
– Heuristic: If an output is the first to send value to an address, it is potentially

the change.
– Heuristic: A round number is typically NOT the change address. In other

words, when users transfer bitcoins between their own wallets, they are likely
to choose values that are powers of ten. On the other hand, it is extremely
unlikely that you receive power of ten change due to a wallet’s coin selection.

– Unnecessary input heuristic: if a transaction has multiple inputs, the pay-
ment (i.e. not the change) address shouldn’t be less than one input alone. In
other words, if there exists an output that is smaller than any of the inputs
it is likely the change. If a change output was larger than the smallest input,
then the coin selection algorithm wouldn’t need to add the input in the first
place.

– Heuristic: Merging two large clusters is rare (i.e. large cluster-slow growth
property)

– Heuristic: No change address (i.e. exact payment amount) indicates that
both addresses belong to same user.

– Heuristic: Batch payments (i.e. many inputs-outputs in the same transac-
tion) likely indicates an exchange or other large organization.

– Peeling chain: Usage pattern from change address. Single address begins
with relatively large amount of coins, and small amount is ”peeled off” to
one address, and remainder is transferred to another address.

– In a peeling chain, the change output is the output that continues the chain.
Note: This heuristic depends on the outputs being spent to detect change.
If an output has not been spent, it is considered a potential change output.

References:

– https://github.com/citp/BlockSci/blob/master/src/heuristics/change_

address.cpp

– https://en.bitcoin.it/wiki/Privacy#Change_address_detection

https://github.com/citp/BlockSci/blob/master/src/heuristics/change_address.cpp
https://github.com/citp/BlockSci/blob/master/src/heuristics/change_address.cpp
https://en.bitcoin.it/wiki/Privacy#Change_address_detection

12 Authors Suppressed Due to Excessive Length

mixing value clustering CS ↔ CM

1. CS = the input of a denomination creating tx
2. CM = the set of input addresses in a merging tx
3. assign the max sum of CM values to the max CS address, remove both and

repeat

Algorithm 1 Mixing value clustering with threshold value vt.

CM , CS ← ∅
Cl← ∅ {Holds clustered addresses}
for txi in B do

if vi ≥ vt then
if vi.type = CreateDenom then

CS ← CS ∪ txi
end if
if vi.type = Merge then

CM ← CM ∪ txi
end if

end if
end for
while CM 6= ∅ ∧ CS 6= ∅ do

m← FindMaxValAndRemove(CM)
s← FindMaxValAndRemove(CS)
Cl← Cl ∪ (m, s)

end while

Algorithm 2 Splitting tx clustering

j = 0
for txi in B ∧txi not in Cl ∧txi.type = CreateDenom do

cS,j = tx.in ∪ tx.out
j + +

end for

general clustering Splitting txs (outputs with specific values)

1. CS = {in.addr[i]} ∪ {out.addr[i]}, for out.addr[i] with value in the CJ de-
nomination set

Merging txs (multiple inputs, under the assumption that multisigs are not
common)

1. ch = ∅, try to identify the change address ch

Dash cryptocurrency deanonymization 13

2. if there is one out.addr and the inputs are in CJ denominations, then (this
probably was just merging, no payment) ch← out.addr

3. if there are 2 out addresses and one is identified as public address that
belongs to a merchant/ exchange company etc, mark the other one as ch

4. if exists out.addr[i] has value smaller than all inputs, ch← out.addr[i]
5. else if??
6. CM = {in.addr[i]} ∪ ch

if one of CS , CM intersects with any address in the merged sets of mixing
value clustering, take the union of all sets

Panos: Find if exchanges do mixing. Same for masternodes. Panos: Cluster
based on mixing freqency.

Removing 2-round data look for collateral 0.004 → 0.003 → 0.002(U) or 0.002
spent otherwise (not reduced by 0.001)

– look for merging and splitting of the same value (round 1 inputs, round 2
outputs)

– to trace round 1 outputs (or round 2 inputs), exclude from your search: (U)
addresses,output addresses that are not inputs in a CJ, output address that
go into a CJ but no 0.003→ 0.002 tx follows in the same or next X blocks

– Remove all associated addresses from the space before moving to 4-round
clustering

Dash-based clustering, rounds 1,4

– if there is a collateral tx 0.004→ 0.003 in the same block or the next ?? blocks
Ioanna: how many blocks does one round usually take , assign inputs to their
CS cluster

– if there is a collateral tx 0.001→ 0 in the same block or the next ?? blocks
and there are spent (S) outputs, assign them to their CM cluster

Dash-based clustering, rounds 2,3

– trace addr1(0.004) → addr2(0.003) → addr3(0.002) → addr4(0.001) →
addr5(0) collateral

– assign addr1 to a CS cluster and mark a set of blocks for each user
– next steps????

Dash-based clustering, aborts and not available masternodes ? Ioanna: identify
behavior

5 Conclusion and Future work

We conclude this report with some interesting future directions for further
deanonymizing dash.

14 Authors Suppressed Due to Excessive Length

Collateral Heuristic: In Section 3, we briefly mentioned the use of a collateral
amount, i.e. an amount that is withheld from the user’s initial funds before
the mixing happens. Although the exact initial collateral amount is a function
of multiple parameters and an amount reduction happens only probabilistically
once every 10 Coinjoins, we believe we can use the collateral initialization and re-
duction to derive the number of chosen rounds with high confidence for each user
(note that this information is not publicly observable in the Dash blockchain).
By inferring the number of mixing rounds with good probability, a probabilistic
analysis of transaction inputs/outputs along the transaction graph is made pos-
sible (i.e. without learning the number of mixing rounds, any analysis without a
known ending point would run indefinitely).

As an extension of this work, we would like to apply our clustering methods to
the whole blockchain data. In order to achieve that in a reasonable time frame, we
also intend to optimize our code (found in Appendix), starting with an optimized
version of the union find algorithm that is repeatedly called throughout the
attack.

Finally, we would like to further explore attacks on mixing protocols. More
specifically, in [10], the authors describe the “Cluster Intersection Attack” over
mixing protocols that takes as input: a set of mixed coins C known to be con-
trolled by the same user and an integer r, representing the adversary’s (possibly
incorrect) assumption that the victim did at most r rounds of mixing. They
design a simulation to implement this attack. We believe that by applying the
collateral heuristic of Section 5, we can derive r with high confidence and imple-
ment the attack on real blockchain data, instead of simulated.

References

1. Coinjoin. https://bitcointalk.org/?topic=139581, accessed: 05/02/2021

2. Darkcoin-fork. https://github.com/dashpay/dash/commit/

c1d622110cc2053de028a7929f99be570bbdca3a, accessed: 05/02/2021

3. Dash-rebranding. https://github.com/dashpay/dash/commit/

35bb210c6b8a782bdccf0dc997b924e6b9130bac, accessed: 05/02/2021

4. Alsalami, N., Zhang, B.: Sok: A systematic study of anonymity in cryptocurrencies.
In: 2019 IEEE Conference on Dependable and Secure Computing (DSC). pp. 1–9.
IEEE (2019)

5. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 34–51. Springer (2013)

6. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: International Conference on Financial Cryptography and Data
Security. pp. 423–443. Springer (2020)

7. Caprolu, M., Pontecorvi, M., Signorini, M., Segarra, C., Di Pietro, R.: A novel
framework for the analysis of unknown transactions in bitcoin: Theory, model, and
experimental results. arXiv preprint arXiv:2103.09459 (2021)

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Tech. rep., Naval Research Lab Washington DC (2004)

https://bitcointalk.org/?topic=139581
https://github.com/dashpay/dash/commit/c1d622110cc2053de028a7929f99be570bbdca3a
https://github.com/dashpay/dash/commit/c1d622110cc2053de028a7929f99be570bbdca3a
https://github.com/dashpay/dash/commit/35bb210c6b8a782bdccf0dc997b924e6b9130bac
https://github.com/dashpay/dash/commit/35bb210c6b8a782bdccf0dc997b924e6b9130bac

Dash cryptocurrency deanonymization 15

9. Fanti, G., Viswanath, P.: Anonymity properties of the bitcoin p2p network. arXiv
preprint arXiv:1703.08761 (2017)

10. Goldfeder, S., Kalodner, H., Reisman, D., Narayanan, A.: When the cookie meets
the blockchain: Privacy risks of web payments via cryptocurrencies. arXiv preprint
arXiv:1708.04748 (2017)

11. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address cluster-
ing. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). pp. 368–373. IEEE (2016)

12. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium (2017)

13. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of
anonymity in zcash. In: 27th {USENIX} Security Symposium ({USENIX} Security
18). pp. 463–477 (2018)

14. Mastan, I.D., Paul, S.: A new approach to deanonymization of unreachable bitcoin
nodes. In: International Conference on Cryptology and Network Security. pp. 277–
298. Springer (2017)

15. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: International
Conference on Financial Cryptography and Data Security. pp. 127–141. Springer
(2015)

16. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140 (2013)

17. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp. 397–
411. IEEE (2013)

18. Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in
the bitcoin ecosystem. In: 2013 APWG eCrime researchers summit. pp. 1–14. Ieee
(2013)

19. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

20. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

21. Ruffing, T., Moreno-Sanchez, P.: Valueshuffle: Mixing confidential transactions for
comprehensive transaction privacy in bitcoin. In: International Conference on Fi-
nancial Cryptography and Data Security. pp. 133–154. Springer (2017)

22. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2p mixing and unlinkable bitcoin
transactions. In: NDSS. pp. 1–15 (2017)

23. Xi, H., Ketai, H., Shenwen, L., Jinglin, Y., Hongliang, M.: Bitcoin address cluster-
ing method based on multiple heuristic conditions. arXiv preprint arXiv:2104.09979
(2021)

16 Authors Suppressed Due to Excessive Length

A Clustering implementation

In this section we provide the code of our Python implementation for the clus-
tering techniques discussed in this report. Our code also requires setting up a
Dash cryptocurrency full-node endpoint to reply the necessary queries.

import requests

import time

EP = "http://127.0.0.1:3001/insight-api/" #network endpoint for Dash full node

ps_denoms = [100001000,10000100,1000010,100001,10000.1]

#denomination values used in mixing

def getBlockHash(blocknum):

’’’

Outputs a block hash given a block number

’’’

url = EP + ’block-index/’ + str(blocknum)

return requests.get(url).json()[’blockHash’]

def getBlockData(blocknum,page=0):

’’’

Fetches a block’s data given a block number.

’’’

url = EP + ’txs/?block=’ + getBlockHash(blocknum)+’&pageNum=’ + str(page)

return requests.get(url).json()

def getTxfromBlock(blocknum):

’’’

Outputs a list of transactions given a block number.

’’’

pages = getBlockData(blocknum)[’pagesTotal’]

listoftxs = []

for i in range(0,pages):

listoftxs += getBlockData(blocknum,i)[’txs’]

return listoftxs

def countAddrinTxlist(txlist,addrset = set()):

’’’

Parses a list of transactions in a block and adds all unique addresses

to a set.

’’’

for tx in txlist:

for intx in tx[’vin’]:

if ’addr’ in intx:

Dash cryptocurrency deanonymization 17

addrset.add(intx[’addr’])

for outtx in tx[’vout’]:

if ’addresses’ in outtx[’scriptPubKey’]:

addrset.add(outtx[’scriptPubKey’][’addresses’][0])

return addrset

def getIOfromTxlist(txlist,idx,io):

’’’

Returns a list of input or output transcations given a transaction list.

’’’

if io == ’in’:

return txlist[idx][’vin’]

elif io == ’out’:

return txlist[idx][’vout’]

def largeValueDenom(txlist,clusterlist=[]):

’’’

Given a transaction list, prints large values (>100) that are denominated.

Returns True if such a transaction was found.

’’’

for tx in txlist: #iterate through all transactions in block

if (len(tx[’vin’]) == 1) and (’value’ in tx[’vout’][0]):

#if a transaction is splitting into denoms

#print(int(float(tx[’vout’][0][’value’])*100000000) in ps_denoms)

if (’value’ in tx[’vin’][0]):

#print(float(tx[’vin’][0][’value’]))

if ((int(float(tx[’vout’][0][’value’])*100000000) in ps_denoms)

and (float(tx[’vin’][0][’value’]) > 100)):

print("")

print("")

print("Large value denominated: "

+ str(float(tx[’vin’][0][’value’])))

print("Block id: " + str(tx[’vin’][0][’txid’]))

return True

#print(float(tx[’vin’][0][’value’]))

#print(float(tx[’vout’][0][’value’]))

return False

def largeValueMerge(txlist,clusterlist=[]):

’’’

Given a transaction list, prints large values (>100) that are merged

from denominations. Returns True if such a transaction was found.

’’’

for tx in txlist: #iterate through all transactions in block

18 Authors Suppressed Due to Excessive Length

if ((len(tx[’vout’]) == 1) and (’value’ in tx[’vout’][0])

and (’value’ in tx[’vin’][0])):

#if a transaction is splitting into denoms

if ((int(float(tx[’vin’][0][’value’])*100000000) in ps_denoms)

and (float(tx[’vout’][0][’value’]) > 10)):

print("")

print("")

print("Large value merged: " +str(float(tx[’vout’][0][’value’])))

print("Block id: " + str(tx[’vin’][0][’txid’]))

return True

return False

def largetxsearch(startblock,endblock):

’’’

Searches for large value merging or denomination within a block range.

’’’

#largetxsearch(1460260,1460500)

starttime = time.time()

for blocknum in range(startblock,endblock):

print("Parsing block " + str(blocknum) + ’/’ + str(endblock)+

" Time elapsed: " + str(time.strftime(’%H:%M:%S’,

time.gmtime(time.time()-starttime))) + ’ , ETA:’ +

str(time.strftime(’%H:%M:%S’,

time.gmtime((time.time()-starttime)*

(endblock-startblock)/(blocknum+1-startblock)))) +

’ sec’, end=’\r’, flush=True)

txlist = getTxfromBlock(blocknum)

if largeValueDenom(txlist) or largeValueMerge(txlist):

print(blocknum)

def cmInputClustering(txlist,clusterlist=[]):

’’’

Given a transaction list and a list of clustered addresses,

runs the common input heuristic and adds them to the cluster.

’’’

for tx in txlist: #iterate through all transactions in block

if (len(tx[’vin’]) > 1) and (tx[’vin’][0][’valueSat’] not

in ps_denoms): #ignore mixing txs

cluster = []

for addr in tx[’vin’]:

cluster.append(addr[’addr’])

cluster = list(set(cluster)) #remove duplicates

if len(cluster)>1: clusterlist.append(cluster)

return clusterlist

Dash cryptocurrency deanonymization 19

def singleOutputClustering(txlist,clusterlist=[]):

’’’

Given a transaction list and a list of clustered addresses, runs

the single output heuristic and adds them to the cluster.

’’’

for tx in txlist: #iterate through all transactions in block

if (len(tx[’vout’]) == 1) and (’addresses’ in

tx[’vout’][0][’scriptPubKey’]): #if single output

cluster = [tx[’vin’][0][’addr’],

tx[’vout’][0][’scriptPubKey’][’addresses’][0]]

cluster = list(set(cluster)) #remove duplicates

if len(cluster)>1: clusterlist.append(cluster)

return clusterlist

def changeAddressClustering(txlist,clusterlist=[]):

’’’

Given a transaction list and a list of clustered addresses,

runs change address heuristics and adds them to the cluster.

’’’

for tx in txlist: #iterate through all transactions in block

if (len(tx[’vout’]) == 2) and (’addr’ in tx[’vin’][0]):

#if two outputs in a tx

#always clusters with first input, but if multiple inputs

they will be clustered as well in the end

if tx[’vout’][0][’value’][-3:] == ’000’: #first output has

#round value (last three digits are zero),

#so second is change address

#so cluster second output with input

cluster = [tx[’vin’][0][’addr’],

tx[’vout’][1][’scriptPubKey’][’addresses’][0]]

elif tx[’vout’][1][’value’][-3:] == ’000’:

cluster = [tx[’vin’][0][’addr’],

tx[’vout’][0][’scriptPubKey’][’addresses’][0]]

elif tx[’vout’][0][’value’] > tx[’vout’][1][’value’]:

#if first output is larger, it is change address

#so cluster first output with input

#maybe introduce a factor?

cluster = [tx[’vin’][0][’addr’],

tx[’vout’][0][’scriptPubKey’][’addresses’][0]]

else:

cluster = [tx[’vin’][0][’addr’],

tx[’vout’][1][’scriptPubKey’][’addresses’][0]]

cluster = list(set(cluster)) #remove duplicates

if len(cluster)>1: clusterlist.append(cluster)

return clusterlist

20 Authors Suppressed Due to Excessive Length

def findclusters(startblock,finishblock):

’’’

Given a range of blocks, parses the blockchain, runs all available

heuristics and outputs the resulting clusters and all parsed addresses.

’’’

clusters = []

alladdresses = set()

starttime = time.time()

for blocknum in range(startblock,finishblock):

print("Parsing block " + str(blocknum) + ’/’ + str(finishblock)+

" Time elapsed: " + str(time.strftime(’%H:%M:%S’,

time.gmtime(time.time()-starttime))) +

’ , ETA:’ +str(time.strftime(’%H:%M:%S’,

time.gmtime((time.time()-starttime)*(finishblock-startblock)

/(blocknum+1-startblock)))) + ’ sec’, end=’\r’, flush=True)

txlist = getTxfromBlock(blocknum)

countAddrinTxlist(txlist,alladdresses)

clusters = cmInputClustering(txlist,clusters)

clusters = singleOutputClustering(txlist,clusters)

clusters = changeAddressClustering(txlist,clusters)

return [clusters,alladdresses]

def mergeclusters(clusterlist):

’’’

Given a list of clusters, finds intersecting elements among those clusters

and outputs the unioned clusters when such intersections occur.

’’’

Make a list of all values, then put them into a separate set

vals = sum(clusterlist, [])

vals = list(map(lambda x: {x}, set(vals)))

for item in map(set, clusterlist):

Find sets that intersect with at least one value with sublist

vals_in = [x for x in vals if x & item]

Output all dosjoint sets with sublist

vals_out = [x for x in vals if not x & item]

Find union of non-disjoint sets and output them into one set

vals_in = set([]).union(*vals_in)

if vals_in:

vals = vals_out + [vals_in]

return [list(x) for x in vals]

def statistics(startblock,finishblock):

’’’

Outputs statistical information for clustered addresses

Dash cryptocurrency deanonymization 21

given a range of blocks.

’’’

res = findclusters(startblock,finishblock)

print("")

print("")

print("Total clusters: " + str(len(res[0])))

print("Total clustered addresses: " +

str(len(list(map(lambda x: {x}, set(sum(res[0],[])))))))

print("Total addresses: " + str(len(res[1])))

	Dash cryptocurrency deanonymization

