Gadgets of Gadgets in Industrial Control Systems:
Return Oriented Programming Attacks on PLCs

Adeen AyubI, Nauman Zubair*, Hyunguk Yoo*, Wooyeon Jof, Irfan Ahmed'
t Department of Computer Science, Virginia Commonwealth University, USA
* Department of Computer Science, University of New Orleans, USA
I{ayubaZ, jow, iahmed3} @vcu.edu, *{nzubair@my.uno.edu, hyool @uno.edu}

Abstract—In industrial control systems (ICS), programmable
logic controllers (PLCs) directly control and monitor physical
processes in real-time such as nuclear plants, and power grid
stations. Adversaries typically transfer malicious control logic to
PLCs over the network to sabotage a physical process. These
control logic attacks are well-understood containing machine
instructions in network packets and are likely to be detected
by network intrusion detection systems (IDS). On the other
hand, return-oriented programming (ROP) reuses blocks (or
gadgets) of existing code in computer memory to create and
execute malicious code. It limits or eliminates the need to transfer
machine instructions over the network, making it stealthier.
Currently, ROP attacks on control logic has never been discussed
in the literature to explore it as a practical ICS attack. This paper
is the first attempt in this direction to explore challenges for a
successful ROP attack on real-world PLCs, including maintaining
a continuous (control logic) scan cycle through ROP gadgets,
no user input (to cause a buffer overflow) to overwrite the
stack for gadget installation, and limited ROP gadgets in a PLC
memory to find blocks of instructions equivalent to the high-level
constructs of PLC programming languages (such as instruction
list, and ladder logic). We identify and utilize typical PLC design
features (that we find exploitable) to overcome these challenges,
which makes ROP attacks applicable to most PLCs e.g., no stack
protection, and remote access to certain PLC memory regions
via ICS protocols. We demonstrate two successful ROP attacks
on the control logic programs of three fully-functional physical
processes, i.e., a belt conveyor system, a four-floor elevator, and a
compact traffic light system. The first ROP attack manipulates a
PLC’s current control logic and has two variants involving either
a single or multiple gadgets; the second ROP attack constructs
a control logic from scratch using gadgets in a PLC’s memory.
Qur evaluation results show that the attacks can be performed
using a set of small-sized gadgets with no significant effect on a
PLC’s scan time.

Index Terms—ROP, PLCs, ICS attacks, control logic

I. INTRODUCTION

Industrial control systems (ICS) automate critical operations
in physical processes, e.g., power generation and distribu-
tion, gas pipelines, and water treatment plants [1], [2]. Sev-
eral pieces of malware demonstrated destructive capabilities
against ICS networks including CrashOverride [3], Havex [4],
and HatMan [5], [6]. Recently, DHS CISA reported Russian
state-sponsored cyber operations against Ukrainian Critical
Infrastructure [7] causing denial-of-service and deployment of
KillDisk and other destructive malware. Effective defensive
strategies require a deeper understanding of cyber attacks [8],
[9] and malware targeting ICS environments. This paper

979-8-3503-0062-8/23/$31.00 ©2023 IEEE

Engineering
Workstation

=

HMI
;&
I

I I

©,

Control Server
(MTU)

Control Center

Field Site

Historian

Fig. 1: Overview of an industrial control system environment

contributes to this direction and explores the feasibility and
challenges of return-oriented programming (ROP) in ICS.

Figure 1 shows a typical ICS environment. It consists of 1)
a control center and 2) a field site. The control center consists
of ICS services such as a human-machine interface (HMI), an
engineering workstation, a historian, and a master terminal
unit (MTU). The field sites consist of the actual physical
processes monitored and controlled via sensors, actuators, and
programmable logic controllers (PLCs). PLCs are embedded
devices equipped with control logic programs that define how
a physical process is controlled. Attackers typically target a
PLC’s control logic to sabotage a physical process [10]-[22].
They typically involve transferring malicious control logic to
a PLC over the network to either modify an original control
logic or inject a new control logic into a PLC’s memory. These
attacks are well-understood containing substantial machine in-
structions in network packets that can be detected by network
IDS [19], [23], [24].

On the other hand, ROP reuses existing code in a target
computer system, limiting or eliminating the need to transfer
machine instructions over the network, making it stealthier.
Specifically, an ROP attack uses in-memory blocks of consec-
utive machine instructions called gadgets, each ending with
a ‘return’ instruction. It executes the gadgets in a specific
sequence to perform a malicious operation on a target ap-
plication. Thus, it does not require injecting a new malicious
code to launch an attack [25]-[27]. Currently, ROP attacks
on a PLC’s control logic have not been discussed in the
literature, showing the research gap in exploring ROP attacks
as a potential attack vector for ICS.

This paper is the first attempt to fill the gap and explore
challenges for a successful ROP attack on real-world PLCs.
We show that ROP can be used to attack a control logic in a

215

PLC, which hampers the functioning of the connected physical
process. Our ROP attack consists of three main steps: 1) We
use an ICS communication protocol to read the PLC’s memory
over the network and acquire its dumps; 2) we then utilize a
disassembly tool to disassemble the dumps and find gadgets
in the memory; 3) we finally update the stack with the gadgets
we want to execute. To perform these steps, we identify
several challenges including maintaining a continuous scan
cycle through ROP gadgets, no user input (to cause a buffer
overflow) to overwrite the stack for gadget installation, and
limited ROP gadgets in a memory to find blocks of instructions
equivalent to the high-level constructs of PLC programming
languages such as instruction list, and ladder logic.

We overcome these challenges by utilizing typical PLC
design features (that we identify as exploitable), making ROP
attacks applicable to most PLCs, e.g., no stack protection,
and ICS protocols reading/writing to certain PLC memory
regions remotely. We demonstrate two successful ROP attacks
(i.e., ROPI and ROP2) on PLCs’ control logic. ROP1 adds
gadgets to current control logic programs to induce malicious
control behavior. It has two variants; one involves only a
single gadget, while the other utilizes multiple gadgets to
manipulate actuators. ROP2, on the other hand, constructs
a control logic from scratch using gadgets. We evaluate the
attacks on the control logic programs of three fully-functional
physical processes, i.e., a belt conveyor system, a four-floor
elevator, and a traffic light system. Our evaluation results show
that small-sized (11 bytes) code and gadgets are undetectable
and can create malicious control logic without substantially
affecting PLCs’ scan time in pus.

The contribution of the paper is as follows:

o We show that ROP gadgets can create malicious control
logic that can be installed and executed by exploiting
typical PLC design features applicable to most PLCs.

e Our ROP attacks cover two practical scenarios, where
they either add one or more gadgets to a PLC’s original
control logic to induce malicious functionality or use a
gadget chain to create malicious logic from scratch.

« We achieve a continuous (control logic) scan cycle
through ROP gadgets. It is contrary to typical Information
Technology (IT) systems where an ROP gadget chain
executes once to obtain a command shell.

o We perform our experiments on real-world settings in-
volving Schneider Electric’s M221 PLC and three fully-
functional physical processes (belt conveyor system, four-
floor elevator, traffic light system.).

The rest of the paper is organized as follows. Section III
gives the motivation while Section II provides the background.
Section IV presents our adversary model and our proposed
ROP attacks. Section V presents the challenges in a successful
ROP attack on a control logic and their solutions through
exploitable PLC design features. Section VI presents the steps
taken in the attack implementation. Section VII evaluates
our attacks on the control logic programs of three different
physical processes in terms of scan time, and number and size

216

XIC XIO0 OTE
g 0| [\ ()
%10.0 %10.1 %Q0.0
Close door Obstruction Door Motor

Fig. 2: Door Motor in Ladder Logic programming

v

0000 | LD %10.0 Close Door
0001 | ANDN | %I0.1 Obstruction
0002 | ST %00.0 Door Motor

Fig. 3: Door Motor in Instruction List

of gadgets. Section VIII discusses the related work, followed
by mitigation strategies for the attacks in Section IX. Section X
concludes the ROP study.

II. BACKGROUND
A. Programmable Logic Controllers

PLCs are embedded devices programmed to monitor and
control physical processes automatically. They have dozens
to thousands of digital/analog inputs and outputs wired with
sensors and actuators that connect them to a physical process.

Control Logic is a program that determines how to control
and monitor physical processes at the field site of ICS. These
control logic programs are compiled and programmed using
vendor-supplied engineering software running on an engineer-
ing workstation which is typically located at the control center
of an ICS. IEC61131-3, a standard adopted by most of the
PLC manufacturers, defines five programming languages to
write a control logic: ladder logic (LD), instruction list (IL),
functional block diagram (FBD), structured text (ST), and
sequential function chart (SFC). The process of writing a
control logic program from engineering software to a PLC is
known as downloading, while reading from the PLC is known
as uploading. A control logic program runs in a scan cycle
once it is compiled and downloaded into a PLC. This scan
cycle consists of three main steps:

1) Read inputs: The CPU reads inputs of sensors and other
connected devices and updates an input table in memory.

2) Run: After the CPU has read or scanned the inputs, it
runs the control logic on the input table and modifies an output
image table based on the execution results.

3) Control: Controlling connected output devices (actuators,
lights) by giving signals based on the output table.

Figure 2 shows rung 0’s LD of a control logic program that
closes the door if “close door” is selected and no obstruction
between the door is detected. The open contact represents the
“close door” push button, while the closed contact represents
an “obstruction” detector. Figure 3 shows rung 0’s IL of the
PLC control logic program.

B. Return Oriented Programming

ROP was first introduced by Shacham [25] as a return-to-
libc attack. This attack bypasses data execution prevention
(DEP) that makes certain parts of the memory (particularly

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

writable ones) non-executable. ROP uses executable instruc-
tion sequences (referred to as gadgets) already present in the
memory to run malicious code; it doesn’t need to transfer new
executable code to a target system. Each gadget ends with a
‘return’ instruction. An attacker typically populates a process
stack with the gadget addresses to execute malicious code.

III. MOTIVATION AND PROBLEM STATEMENT

An ICS malware targets a PLC’s control logic to disrupt
industrial processes. For instance, Stuxnet [10] infects the
control logic of Siemens S7-300 PLCs to attack centrifuges of
a nuclear plant; Triton/Trisis [28] disables Schneider Electric’s
Triconex Safety Instrumented Systems (SIS) by replacing the
original ladder logic with an infected one. Further, control
logic attacks have been studied to understand the manipulation
of ICS protocols to inject malicious control logic into a
PLC [16], [18], [29]-[31].

While these attacks successfully target a PLC’s control
logic, most of them have a considerable downside. They
involve sending substantial malicious code to a PLC over the
network to be noticed by IDS [19], [32], [33]. For instance,
Stuxnet malware is half a megabyte in size [34]. Furthermore,
a strict firewall can prevent reading/writing to the control logic
of a PLC remotely. For instance, ICS protocols have an address
field to access different memory regions of a PLC, including
control logic. The firewall rules can block packets containing
control logic addresses.

Under these usual circumstances, the attacker can still
access the I/O data blocks of a PLC remotely using ICS
protocols. HMI, historian, and other ICS services in the
control center exchange I/0O data with PLCs. IDS and firewalls
do not block I/O data to maintain remote visibility of the
underlying physical process. The attacker may use a PLC’s
data blocks to inject malicious control logic. Yoo et al. [16]
has demonstrated a data execution attack, which involves
transferring a malicious control logic to the data blocks of a
PLC over the network and executing it by changing a pointer
in a configuration block that points to the start of a PLC’s
control logic. While their attack subverts the firewall, an IDS
can still notice their control logic code in transit [19].

ROP can potentially exploit a PLC’s data blocks effectively

since it traditionally does not require transferring executable
code over the network and uses gadgets already in a target
device’s memory.
Problem Statement. Given an ICS environment running IDS
to monitor any transfer of control logic, the attacker’s goal is
to utilize a PLC’s data blocks remotely for ROP to execute
malicious control logic.

IV. ROP ATTACKS ON CONTROL LOGIC
A. Adversary Model
Our adversary model assumes that an attacker accesses the
control center network via a typical IT attack vector, such as
an infected USB stick, similar to real-world ICS attacks, e.g.,
TRITON [28] and Ukraine Power grid attack [7]. The control
center infiltration enables the attacker to communicate with a

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

target PLC over the network through an ICS protocol to launch
an ROP attack. During this process, the attacker uses existing
instructions in a PLC’s memory to avoid sending huge amounts
of malicious code over the network that stands a chance of
being detected by intrusion detection tools.

If the PLC has password authentication against unautho-
rized read/write messages, the attacker will utilize the attack
methods documented by Ayub et al.’s study [35] to bypass
PLC authentication.

B. Proposed ROP Attacks

We introduce two ROP attacks on a PLC’s control logic to
sabotage a running physical process by changing the process
to an unexpected state. For instance, the attacker turns off
the motor that moves a conveyor belt. The attacker typically
achieves it by manipulating actuators through a compromised
PLC. Section VI-B illustrates the ROP attacks in detail.

ROP 1. This attack integrates gadgets with a PLC’s original
control logic to induce malicious control behavior. We explore
two variants; one uses a single gadget to manipulate the
running control logic, and the other uses a gadget chain
consisting of multiple gadgets.

Variant I: This ROP variant utilizes a gadget that allows
manipulation of the value of the register associated with
the output port of the PLC. Since only one gadget is used,
it simplifies the attack execution and has less impact on
the control logic scan cycle (depending on the gadget size).
However, a single gadget gives less control over the values of
each output port. In other words, the attacker can only set or
unset some bits of the output register, limiting the capability
to manipulate associated actuators.

Variant II: This ROP variant utilizes a set of gadgets to
have greater control of the output ports of a PLC. It employs
a gadget chain to set or unset any value of the output register
and hence the corresponding output ports. Note that the first
variant does not give an attacker much flexibility and control
of the PLC’s output ports, whereas, with the second variant,
the attacker can control any output port and the connected
actuators. However, more gadgets add complexity to the attack,
and their combined code is likely to be more than a single
gadget code of variant I, causing a longer scan cycle of the
control logic program.

ROP 2. This ROP attack utilizes gadgets to construct a new
control logic from scratch, allowing the attacker to manipulate
a physical process to a large extent. The malicious control
logic uses the data from the PLC’s input devices, such as
sensors, to manipulate a physical process to an unexpected
state. For instance, while riding an elevator, a user requests
a second floor, but the connected (compromised) PLC always
skips the second floor and takes the elevator to a random floor.

The effectiveness of this attack depends on the availability
of gadgets in a PLC memory, which may limit the attacker
from creating a desired malicious control logic. Note that
this ROP attack differs from ROP 1 attack, which retains
the original control logic and adds a gadget or a sequence
of gadgets to induce malicious functionality.

217

V. CHALLENGES IN ROP ATTACKS ON PLC

We identify several challenges for a successful ROP at-
tack on a PLC and devise techniques through PLC design
features/choices that we find exploitable.

A. Challenges

We define the challenges into three groups related to
malicious control logic, stack manipulation, and ROP attack
execution. Figure 4 shows which part of the ROP attack each
challenge corresponds to. C1 (in yellow) represents challenges
related to malicious control logic, C2 (in orange) represents
challenges related to stack manipulation, and finally, C3 (in
green) represents challenges related to ROP attack execution.
A gray area indicates that the stack is not directly accessible
in a PLC via an ICS protocol. The four steps (a) - (d) on
the right shows that ROP attack is continuously executed. The
details are described in the proposed techniques.

,'ﬂ [d |
PLC : : : %
ICS Protocol sp [ox0278 V'] 20278 sp [Goz78] 00278
I ! 0x0274 0x0274 | $Gadget
oo oo
!‘ H .
;
b

]

0xozoo.‘

A

Figure 5 shows a PLC’s high-level memory layout. Since a
user input to control logic occurs through ICS protocols to
read/write I/O data, a buffer overflow vulnerability does not
apply as the I/O memory block lies outside of the stack region.

5 /o
User :
0x605109 Control
0x20100 Logic
sp =) 0x701000 SMC
Stack Code block
- Ics protocol o
=
buffer Attacker

Fig. 5: High-level memory layout of a PLC

Challenge 2.2: Executing an ROP gadget chain while en-
suring normal PLC operations. While updating the stack and
the stack pointer to execute a gadget chain, it is challenging
to ensure that the PLC is functioning normally. For instance,
since the stack changes dynamically, the attacker cannot write
a gadget chain in any part of the stack memory. Unlike PLC,
in a traditional ROP attack, buffer overflow populates the stack
automatically with a gadget chain.
3) Challenge 3: ROP Attack Execution: .

Challenge 3.1: Maintaining a continuous attack cycle

Memory
b] v
-~
Control N
Logic : $Gadget i
- 0x0278
w6 sp [0x0274 ! B -
[SPI-n s 0x0274 | $Gadget [|*
= (G n: number of $
) 0x0270
:
Lsmc | 0x0200 | Havww

Fig. 4: Challenges in ROP Attacks on PLC
(a) Normal Operation Running
(b) SMC Executed to Run Gadget
(c) Gadget Execution
(d) Back to Normal Operation

1) Challenge 1: Malicious Control Logic: .

Challenge 1.1: Determining the start and end addresses of
the control logic. Engineering software downloads a control
logic on a PLC. The control logic location in the PLC memory
is helpful for the attacker to determine gadget addresses in the
control logic code and set up an initial attack vector for stack
manipulation (discussed later in detail).

Challenge 1.2: Deciding which gadgets are useful. A mali-

cious control logic produces an undesired state of a physical

process. Given a set of available gadgets in a PLC memory,

it is a challenge to create a gadget chain of malicious control

logic that can cause an adverse effect on a physical process.
2) Challenge 2: Stack Manipulation: .

Challenge 2.1: Overwriting the stack without buffer over-
flow. Traditional ROP attacks exploit a buffer overflow vul-
nerability in a user application to inject a malicious payload
consisting of gadget addresses and register values. But in
PLCs, control logic programs run standalone on I/O data and
do not give access to the stack through remote user input.

218

through ROP gadgets. Control logic has a scan cycle to
maneuver a physical process continuously using the process
I/O data. The gadget chain has to run on each cycle to sustain
the malicious state of the process. In other words, if the gadget
chain runs only once, in the next cycle, the control logic
(without the gadget chain) will undo the malicious change. For
example, the benign control logic in a water treatment facility
is supposed to release a chemical by opening a valve under a
certain (water) condition. However, the gadget chain triggers
and closes the valve. In the next cycle, the control logic will
again attempt to open the valve, and this time without the
gadget chain, the valve will remain open.

Challenge 3.2: Persistent control of a compromised PLC.
The persistent control allows the attacker to update the gadget
chain running on a compromised PLC. For instance, in a
ransomware attack, the first gadget chain can show that a
physical process is under the attacker’s control (let’s say by
disabling a release valve in a gas pipeline); the attacker can
later update the gadget chain to damage the process if a ransom
amount is not received within a given time period.

B. PLC Exploitable Features

Predictable control logic location. A control logic address
in a PLC memory is either fixed for a PLC model or can be
found in a PLC’s configuration block. For instance, Modicon
M221 PLC (of Schneider Electric) has a configuration block
that contains a pointer to the start of the code block (including
the control logic), which can be read over the network using
the UMAS protocol. MicroLogix 1100/1400 PLC (of Allen-
Bradley) has a fixed control logic address that can be found

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

by downloading a control logic to a PLC and then analyzing
its network traffic.

Using the mapping between CPU registers and I/0O ports
for searching gadgets. PLCs use preset CPU registers for
mapping to input and output ports. The attacker can use these
registers to find relevant gadgets to read input port data and
write to the output port data to control actuators.

For instance, a control logic program written for an elevator
will have specific components (such as LED lights) connected
to the output ports of a PLC, which turn on and off accord-
ing to the program written. Disassembling the control logic
program shows that each bit of the input and output register
maps to a different input and output port, respectively.

Download and upload capability via ICS protocols. Con-
trol engineers use an ICS protocol to download/upload and
maintain control logic remotely using PLC engineering pro-
gramming software. An ICS protocol, if successfully reverse-
engineered, can be used to read and write to a PLC’s memory.
Moreover, PLCs do not differentiate between a legitimate
download request and one from an attacker. PLCs employ
password-based authentication mechanisms to prevent attack-
ers from writing malicious control logic. However, these
mechanisms have been proven weak and are easily exploitable
across most PLCs [35], [36].

No stack protection. The stack is a critical memory and
is mostly protected by checking whether code is executable,
valid, or contains prohibited functionality before being loaded
onto the stack. However, PLC does not have proper stack
protection, so if it has a way to access the stack area, many
malicious capabilities can be secured.

The stack area in PLCs is inaccessible through user input,
and PLC is no different. However, it is possible to indirectly
get access to the stack area using the features of PLC that
repeatedly executes control logic. PLCs typically use a stack
pointer to maintain the position of the stack in the memory.
After the first instruction in the stack is popped, the stack
pointer increments and goes to the next instruction. PLCs do
not enforce stack protection, allowing an attacker to modify its
contents just by going to the address the stack pointer points
to and then modifying that region with the attacker’s gadget
address. Also, the stack pointer register is fixed and allows all
kinds of operations (such as logical and arithmetic) on it.

C. Proposed Techniques

We propose four techniques (T) to address the challenges.

T1: Finding Useful Gadgets (FUG). To solve challenge
1.2, we use the following technique to find useful gadgets
in control logic programs. This technique finds registers that
directly map to the input/output ports of a PLC. To accomplish
this task, we first write different control logic programs,
disassemble them, and notice a pattern from which we discover
the register associated with input and the one related to output.
In some attacks, however, we use other gadgets as well.
Addresses of all gadgets determined to be useful are stored
in the database as shown in Figure 4 and 6.

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

Memory
.
=% Buffer p ——
Control RO [0x0270
ontro
Logic d SP | 0x0270
g [SP]-n
T n: number of $G "
G (n=2)
(Loop) H
0x0278 :
Stack et
I% | 0x0274 | _$G2 l
SMC | | :|".SP(RO) [T 0x0270 [s61
|] z
I— 0x0200‘

Fig. 6: Continuous and Persistent ROP Attack

T2: Stack Modification Code (SMC) Injection. Stack Mod-
ification Code (SMC) is a small-size machine code (only
11 bytes for M221 PLC and undetectable by IDS in our
experiments), written in assembly language that is enough to
modify a PLC’s stack to run gadgets. In this technique, the
attacker appends SMC to the control logic written on a PLC’s
memory (as shown in Figure 4- a to 4- d). The attacker first
finds the end address of the control logic. This can be done by
reading the start address of a control logic and then calculating
its size or by reading the last ‘return’ instruction in the control
logic area of a PLC’s memory via an ICS protocol. Once the
end address of the control logic is found, an attacker uses
an ICS protocol to inject SMC in place of the last ‘return’
instruction of the control logic.

This technique ensures the attacker achieves a continuous
(control logic) scan cycle through ROP gadgets. If SMC is
properly inserted at the end of the control logic, SMC will
be executed in every cycle of PLC operations as shown in
Figure 6 as part of the control logic and is called a continuous
ROP attack. Without this technique in place, an ROP attack
would have been a one-time attack since once the stack pops
a value, it needs to be pushed in again to run again. Moreover,
our evaluation results show SMC is not detected by IDS.

T3: Stack Modification. In this technique, we use the stack
pointer in the PLC to go to the stack to modify its contents to
solve the problem of overwriting the stack with our gadget
addresses. To ensure that the modification does not affect
the normal functionality of PLCs (as the modification can
overwrite the stack contents that are still to be executed), we
decrement the stack pointer’s value by one step (per gadget)
and then modify the stack location it points to.

Figure 4(a) shows the state of the stack and the stack pointer
value in a normal setting. Figure 4(b) shows the state after
SMC runs as part of the control logic. Decrementing by one
step ensures that only the return address that has already been
returned (after successful execution of the normal instruction)
gets overwritten. After the gadgets are executed, the pointer
increments again and executes the next instruction (as seen in
Figure 4(d)). If we modify the current stack pointer value,

219

the instruction at the return address still to be run would be
overwritten, which can make the PLC malfunction. Using this
stack modification technique, it is possible to ensure that PLC
functioning is not affected.

T4: Persistent ROP Attack. As shown in Figure 5 (in purple),
an attacker uses an ICS protocol to write a payload onto a
PLC’s memory region that is free to use. It can be in the
data block or another free region. We call this space a ‘buffer’
loaded with gadget addresses that are later loaded onto the
stack with the attacker’s SMC. This technique makes sure the
attacker has persistent control over the kinds of gadgets he
wants in the stack. An attacker needs to load this buffer with
his new payload (containing the gadget addresses) every time
he wishes to execute his ROP attack.

Figure 6 shows a complete ROP attack. An attacker pre-
loads the buffer with a payload which is loaded onto the
stack with SMC by first decrementing the value of the stack
pointer per gadget and then loading the gadget addresses in the
location where the stack pointer points. We assume the address
is 4 bytes long, so each decrement results in a decrement of
4 bytes. Finally, since the SMC is part of the control logic,
the gadget chain keeps running with the control logic in every
scan cycle. Injecting SMC into the control logic ensures the
attacker’s payload is pushed back to the stack every time the
control logic is run.

VI. IMPLEMENTATION

We use Schneider Electric’s Modicon M221 as a target
PLC for the implementation and demonstration of our attacks.
This PLC serves as a typical example of a traditional PLC.
It has both digital and analog input and output ports and
supports communication interfaces such as USB and Ethernet.
It communicates with vendor-supplied engineering software,
which is used to write a control logic program on it. Like most
of the other PLCs, the communication between the engineering
software and the PLC takes place in the form of request and
response packets with the PLC acting as a server and the
engineering software as a client. The communication protocol
is, however, proprietary and needs to be reverse-engineered
for successful communication other than the vendor-supplied
engineering software. The PLC’s memory can be acquired
through the network protocol and then dumped for further
analysis. M221 PLC uses RX Renesas architecture. The RX
CPU has sixteen general purpose registers (RO - R15) with RO
being the stack pointer, nine control registers (ISP, USP, etc),
and one accumulator used for digital signal processor (DSP)
instructions. The proposed techniques in Section V-C can be
applied to most PLCs. For instance, all PLCs have input/output
ports required for using the FUG technique to find useful
gadgets. Additionally, since PLCs are embedded devices, a
stack (and hence, gadgets) is fundamental to them [37]-[40].
Based on the hardware architecture, each PLC may have
a certain designated register as the stack pointer. Similarly,
all PLCs have a download capability and a communication
protocol that can be used to append SMC to the control logic.

220

A. Steps Taken in Implementing ROP Attacks

Below, we present implementation steps that are derived
from the above-stated techniques.

1) STEP I: PLC’s memory acquisition: First, we acquire
the entire memory of the PLC via the ICS communication
protocol. M221 uses a proprietary protocol Unified Messaging
Application Services (UMAS) embedded in Modbus so it
needs to be reverse-engineered in order to initiate commu-
nication. We utilized the information from [18], [16] and [35]
who have partially reverse-engineered the protocol to develop
a virtual client that initiates a session with the PLC and sends
requests to read the desired memory region.

A PLC’s memory can be divided into protocol-mapped
and non-protocol-mapped memory space. While the protocol-
mapped memory space can be acquired via ICS protocol,
the non-protocol-mapped memory cannot be. Modicon M221
PLC’s memory map shows memory regions such as External
RAM, Peripheral 1/0O, On-chip ROM, and FCU-RAM [41]-
[44]. Among these memory areas, only ‘External RAM’ is
a protocol-mapped memory space, and all others are non-
protocol-mapped memory spaces. In order to access the non-
protocol-mapped memory, we utilize PLC Memory Extractor
(PEM) [30] that appends a duplicator code to the control
logic in order to copy the non-protocol-mapped memory space
to protocol-mapped memory space. This way we are able to
acquire the entire memory through the ICS network protocol.
Note that the memory can also be acquired via JTAG [45], [46]
but that requires having physical access to the PLC which the
attacker does not always have in the real world.

2) STEP II: Memory Dump Analysis: Next, we utilize
a disassembly toolchain to disassemble the binary files of
the memory dumps acquired in the previous step. In this
step, we analyze the disassembled file and derive important
information. For instance, we figured ‘0x02’ translates to ‘rts’
instruction in M221 PLC.

In this step, we also find gadgets in the memory dump,
FUG, and then generate a gadget chain that we want to run
as part of our attack as explained below.

Finding all gadgets in the PLC’s memory and generating a
gadget database. All gadgets must be indexed to do FUG. To
find all gadgets, we use the same approach followed by [25]
except to find the opcode " 0x02’ instead of ' Oxc3’ to
detect the return instruction. We not only look for gadgets
that exist as a result of the code-generation choices of the
compiler but the ones that exist otherwise as well. For instance,
the disassembly of the on-chip ROM region in M221 PLC
shows the machine code "e5 12 08 02" which translates
to “mov.d 32[rl], 8[r2]” as a result of the compiler code-
generation choice. However, the last two bytes of this machine
code "08 02" can also form the instruction sequence, ’bra.s
0x8 rts” which we can use as a gadget.

Algorithm 1 shows how we find gadgets in the memory
dump. First, we look for *0x02’ byte in the binary file. Then
at this byte, we step back and look for the maximum number of
bytes that can make a valid instruction. There can be multiple

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

Algorithm 1 Finding valid ROP gadgets in memory

I: maxzIntSize < 0x08
2: gadgets <[]
3: for each offset of 0x02 do

4 failCount < 0

5: start Addr < the offset -1

6: stopAddr < the offset +1

7 while failCount < maxIntSize & startAddr > 0 do

8: res < the result of the following command:
rx-elf-objdump D b binary m rx filename
—start-address =start_addr —stop-address =stop_addr

9: startAddr < startAddr — 1

10: if res ends with ’rts’ and does not contain the string “unknown”

then

11: gadgets < res

12: failCount < 0

13: else:

14: failCount < failCount +1

15: end if

16: end while

17: end for

possible instructions that can exist before a return such as
‘Add’, ‘Sub’, ‘Jump’, etc. We record all the possible
instruction sequences and keep repeating the process of finding
instruction sequences until no more instruction sequence is
found. This way we get a combination of gadgets from just
one return instruction.

FUG from the gadget database. Once we have all the gadgets
available, we use the FUG technique to find gadgets that can
help us accomplish our tasks. We specifically look for gadgets
that are associated with the input/output register among others.
In the case of M221, we discover that register R12 maps to
the input port while R13 maps to the output ports of the PLC.

Generating a gadget chain. Finally, using the gadgets that
we have, we generate a gadget chain for the attacks.

3) STEP III: Executing the ROP chain: In order to execute
the ROP chain successfully, we use SMC injection and the
Stack Modification technique mentioned in Section V-C.

SMC injection. We use information derived from existing
work [16], [18] to determine the start and end address of
control logic. Both the start address of the control logic and its
size can be found in the configuration block of the PLC. The
size along with the start address can be used to determine
the end address of the control logic where SMC can be
inserted. Note that SMC is inserted in the place of the last
‘return’ instruction of the control logic. Also, we show in our
evaluation results, that SMC injection is not detectable by IDS.

Stack Modification. As mentioned before, a stack pointer
increments after each value gets popped from the stack and
then points to the value that needs to be popped next. If we
just modify the current value in the stack, it can hinder the
normal functioning of the PLC because the actual instruction
that was supposed to run as a result of the pop operation
may not run at all. So in order to populate the stack with our
gadget addresses, we decrement the stack pointer’s value and
then update the address it points to in the stack to the location
of the gadget that we want to be executed.

Figure 4(b) shows executing the ROP chain while ensuring

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

line assembly
1: sub #4, r0
2: mov.l #0x07020000, r2
3: mov.l r2, [r0]
4: rts

Fig. 7: Stack modification code (SMC)
PLC functionality. In this case, the number of gadgets is 1, so
the value of the original stack pointer (SP), in this case, the
RO register, is decremented by one address value (from 278
to 274). In the case of running a set of gadgets, the decrease
in SP may increase depending on the value of n.

To change the value of the stack pointer, we utilize the RX
Renesas dataset to find the register that acts like a stack pointer.
Figure 7 shows SMC. In order to make sure the PLC does not
lose its basic functionality, before changing the address that
the current stack pointer points to, we decrement the stack
pointer (line 1) and then we update the address it points to
(lines 2 - 3). This address corresponds to the location of our
selected gadgets. Moving the pointer one step back prevents
overwriting the contents of the stack that have yet to be popped
and executed. Instead, we overwrite the return address that has
already been returned after running. Altering the stack pointer
to point to a new location containing the gadget addresses,
instead of loading the addresses onto the existing stack, can
adversely affect the normal functioning of the PLC. This is
because it completely changes both the stack location and its
contents, making it impossible to restore the original stack
contents. Note that changing the stack pointer to a new location
with the gadget addresses instead of loading them onto the
existing stack can affect the normal functioning of the PLC
since it changes the stack location and its contents entirely
and there is no way of restoring the original stack contents.

B. Proposed ROP attack implementation

1) ROP 1: ROP 1 is further divided into two approaches.
The first approach uses just one gadget present in memory to
attack the control logic while the second approach consists of
an ROP chain that has more than one gadget.

ROP Variant 1. From our analyses and experiments, we
figured that register R12 maps to the PLC’s input ports while
register R13 always maps to the PLC’s output ports. We
figured out this information after writing different control logic
programs that deal with different output ports and then reading
and disassembling the compiled binary from the PLC’s mem-
ory, followed by a differential analysis of the disassembled
control logic programs. So in this kind of attack, we extract the
gadgets that are associated with register R13 from the gadget
database and then select the relevant gadget that we want to
execute. For instance, the following instruction; bset #2,
r13 sets bit number 2 of R13, which in turn turns on %Q0.2
output port. In order to execute our selected gadget, we inject
a code in place of the last ‘return’ instruction of the control
logic that basically updates the stack with our selected gadget
address. Once the gadget address gets written inside the stack,
the gadget gets executed, and the ‘return’ instruction takes the

221

assembly

mov.b 205[rl2], rl3

rts

2: mov.l 76[rl5], rl3
rts

3: mov.l 388[rl5], rl3

rts

Gadget#
1:

assembly
add #0x66laef, rl5, rl3
rts
2: sub rl4, rl3
rts
3: sub r0, rl3
rts

Gadget#
1:

a) Gadgets using “mov” instruction

b) Gadgets using arithmetic instructions

Gadget# assembly
1: And rl4, ril3
rts
2: or rl2, rl, rl3
rts
3: or rl4, rl, rl3
rts

Gadget# assembly
1: popm r6-rl3
rts
2: Dbset #14, rl3
rts
3: bset #2, rl3
rts

c) Gadgets using logical operations

d) Other gadgets

Fig. 8: Gadgets that modify R13 register

control back to the stack. Figure 8 shows some of the gadgets
from the memory of a PLC that can be used for this attack.
While these gadgets give us the ability to manipulate output
values, we are still limited to only being able to use a few
output ports. We also do not have much control over the value
we want to keep in each of the output ports. So if an attacker
wants to set or unset a chosen output port, she will have to
utilize the second approach.

ROP Variant II. In our first approach, we enhance the
probability of finding relevant gadgets capable of manipulating
the output ports of a PLC. Additionally, we employ a second
approach in which we carefully select gadgets that grant us
a greater degree of control over the physical process. This is
because our selection of gadgets helps us to manipulate any
of the output bits of the PLC. This gives us more flexibility
to set our choice of value into the selected output port. For
instance, we can give output n the value “1” or “0”, where n
is any number from 1 to the number of output ports of a PLC.
A typical example of a gadget chain for this attack is shown in
Figure 9 for M221 PLC. All of the gadgets in this chain were
found in the on-chip ROM region of this PLC. The first gadget
that executes is popm r14-r15 which pops OxFFFFFFFF and
0x00000000 into r14 and rl15, respectively. The second
gadget, or r14, rl, r13, does a logical OR operation between
rl4, rl, and r13 and keeps the result in r13. So now r13 has the
value OxFFFFFFFF. The next gadget, popm r14-r15, again
pops 0x00001001 and 0x00000000 and places the value
into r14 and r15, respectively. Finally, the last gadget, and
r14,r13, performs a logical AND operation between r14 and
r13. Sonow r13 has the value 0x00001001, which would
turn on output bits 1 and 4.

2) ROP 2: For the second kind of attack, we construct a
control logic from scratch using gadgets in a PLC’s memory.
Due to the limitations in the variety of gadgets available in
memory, the complexity of control logic that can be developed
is constrained. For a brief example, consider a control logic
that turns on output %QO0.1 if input %I10.3 is on. Figure 10(a)
shows the ladder diagram for this control logic while Fig-
ure 10(b) shows its disassembled version in RX architecture.
The control logic has two instructions (excluding the ‘return’
instruction). From our analysis, we found these instructions

222

>
1rts

fand r14, ri3!
Return Address 4 and mif Ehe

0x00000000

0x00001001 popm rl4-r15]|

irts :

Return Address 3

Return Address 2

0x00000000

,,,,,,,,,,,,,,,,,,,,,,,,,

OXFFFFFFFF

! popm rl4-rl5|
L :

Return Address 1
1 rts

,,,,,,,,,,,,,,,,,,,,,

Fig. 9: Gadget chain that sets output bits 1 and 4

XIC OTE
Rung @ [()

%10 3] %Qe {1]

a) Ladder diagram
Gadget# assembly
Offset binary code assembly L itzt #3, 112

0: 7c 3c btst #3, rl2
2: fd el 2d bmc #1, rl3 —— 14— 2: bmc #1, rl3
5: 02 rts rts

b) Disassembled control logic c) Gadgets found in memory

Fig. 10: Control logic that turns on output 1 if input 3 is on
in the memory as individual gadgets (see Figure 10(c). This
construction is, however, limited and may not allow an attacker
to construct any kind of control logic.

VII. ROP CASE STUDIES ON PHYSICAL PROCESSES

We evaluate our attacks on three different physical processes
i.e., elevator, belt conveyor system, and traffic light system.
Experimental Settings. The scripts (to acquire memory, to
find the control logic’s start and end address, and to find gad-
gets from the acquired memory) are written in Python. SMC
is written in RX architecture assembly language which we
convert to machine code using GCC for Renesas 8.3.0.202202-
GNURX Linux Toolchain [47]. The firmware version of Mod-
icon M221 is v1.6.0.1. We use Windows 10 virtual machine
(VM) to run EcoStruxure Machine Expert - Basic version 1.2
and Ubuntu 16.04 (VM) to run our scripts. The PLC and both
our VMs are connected via Ethernet to our internal network.

A. Case Study 1: Elevator

Testbed Setup. Elevators transport people and/or freight from
one floor or level to another. This saves time and energy and
especially benefits people with moving disabilities. Figure 11
shows a four-floor elevator model used for our experiments.
The model itself has four floors. A user can select a floor
from both inside and outside the elevator as input to the PLC.
In response, the elevator moves to the desired floor while the
LED lights show the floor it is on. Each input/output port
of the PLC is connected to some elevator component. In the

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

il
.

Photoelectric
sensor

Fig. 11: (L) Front view of the elevator model
(R) Top view of the conveyor belt model
case of our lab model, %Q0.0, %Q0.4, %Q0.5 are connected
to one of the LED lights, %Q0.1 drags the elevator downward,
9%Q0.2 drags it upward, %Q0.3 is connected to the motor that
opens the door, while %Q0.6 is connected to door closing.

Experiments. We test the first variant of ROP 1 on the elevator
with four floors. We use the gadget bset #2, r13 to set
output bit 2. We append the code to modify the stack pointer
value to the end of the written control logic. While the control
logic is being executed, the control goes to the location of our
gadget, which turns on %QO0.2. As mentioned, this output port
is connected to the motor that drags the elevator upward. With
our attack, since %Q0.2 is always set, the elevator keeps going
upward. Once it reaches the limit (last floor), the motor keeps
working, causing the elevator to exceed its intended stopping
point, which could result in the elevator falling due to gravity
and the force caused by the rotating motor. Note that this can
also lead to loss of lives if implemented in the real world.

Evaluation Results. To evaluate how ROP attacks affect a
PLC’s runtime, we measure the PLC’s scan time. We also
measure the program size, number, and size of gadgets as
shown in Table L.

a) ROP Attack Detection: We use Shade [19] to evaluate if
SMC can be detected in network traffic. Shade is a stateful
open-source IDS, specifically designed to detect control logic
in network packets.

The SMC contains 0 rungs and at the same time has a very
short length(11 bytes) with a high entropy (2.85) compared to
the attack packets. Since attack packets are often correlated in
proportion to the number of rungs and entropy, the correlation
of SMC is the opposite of the attack group. Hence, it is difficult
to detect as long as the IDS learns features that are frequently
used when classifying codes such as rung and entropy. As a
result, the extracted features of SMC looked naive compared
to other control logic that causes malicious behavior.

b) Scan time and program size: In a clean state, the PLC’s
scan time controlling the elevator process is 120-122 ps. When
we append the stack modification code (SMC), the scan time
is not significantly affected. This is because the size of SMC
is only 11 bytes which, when added to the 659 bytes of the
original control logic code, results in a total of 670 bytes, and
this increase does not have a substantial impact on the scan

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

TABLE I: Performance evaluation of clean and malicious state
(using the first variant of ROP 1) on elevator

[[Scan time (us) | Program size
[Clean state | 120-122 | 659 bytes | - |
| icious state | 121-122 | 670 (include 1T bytes of SMC) | 1 |

[Number of gadgets | Size of gadgets |

3 bytes |

TABLE II: Performance evaluation of the clean and malicious
state of conveyor belt

[[Scan time (us) | Program size | Number of gadgets | Size of gadgets |
| Clean state | 1™5-127 38 bytes | - - |
[Malicious state | 126 - 127 | 49 (include 11 bytes of SMC) | 7 [byes |

time.
c) Number and size of gadgets: For ROP 1, we use just one
gadget that is 3 bytes in size.

B. Case Study 2: Belt Conveyor System

Testbed Setup. Conveyor Belts are used in industrial settings
to move and sort supplies in order to save time and energy.
Figure 11 shows the top view of the model used for our exper-
iments. It has different sensors such as Inductive, Capacitive,
and Photoelectric which are used to sort different objects,
and has a DC Motor that provides power. This conveyor belt
is connected to M221 PLC via input and output ports. For
instance, %Q0.0 is connected to the DC gear voltage motor
that runs the belt, %Q0.1 is connected to valve 2 (the inductive
sensor which sorts metal objects), %Q0.2 is connected to valve
1 (the capacitive sensor which sorts plastic objects).

Experiments. We test the second variant of ROP 1 on the
conveyor belt the result of which is that valve 1 stays ahead
while the belt is running. Our gadget chain is similar to the
one shown in Figure 9 except that the value that we keep in
register R14 is 0x00000101 (note the value in the chain that
comes right after “Return address 3). This attack disrupts the
conveyor belt in a way that metal objects are not allowed to
pass through since valve 1 is pushed forward.

Evaluation Results. We use an IDS to detect the ROP attacks
and further evaluate performance in terms of scan time and
gadget size as shown in Table II.

a) ROP Attack Detection: Similar to case 1, we use
Shade [19] to evaluate the detection of SMC code when it
is transferred. Since the only change in SMC is the address
of the gadget, it is not classified as an attack either.

b) Scan time and program size: In a clean state, the PLC’s
scan time in controlling the elevator process is 125-127 us.
When we append the stack modification code (SMC), the scan
time is not affected much.

¢) Number and size of gadgets: We test the conveyor belt
using a gadget chain that comprises eight addresses in the stack
with four of them being gadgets and the rest being values that
we pop from the stack. Three gadgets are 3 bytes and one is
4 bytes, for a total of 13 bytes.

C. Case Study 3: Compact Traffic Light System

Testbed Setup. Our traffic light system consists of red, green,
orange, and blue lights and an emergency toggle switch. When
the toggle switch is on, it disables the system, and the blue
light starts blinking.

223

Experiments. For testing ROP2 with the gadgets in Figure 10,
we construct and run a control logic that activates %Q0.1 when
%]10.1 is triggered.

Evaluation Results. We use Shade [19] to detect the ROP
attacks and further evaluate performance in gadget size. Since
ROP 2 does not use the original control logic, the evaluation
of the impact of scan time and program size on the original
control logic is irrelevant and omitted.

a) ROP Attack Detection: Similar to cases 1
Shade [19] could not detect SMC.

b) Number and size of gadgets: We use two gadgets to
execute the control logic, with both gadgets being 3 bytes
long.

and 2,

VIII. RELATED WORK

While the existing literature presents a wide range of ICS
attacks [13], [14], [17], [20], [35], [36], [48]-[61], this section
first covers control logic attacks on PLCs and then briefly
discusses ROP attacks. However, none of them combine the
two to show control logic attacks on PLCs via ROP.

Control Logic Attacks on PLCs. Senthival ef al. [29] present
denial of engineering operations attacks in which the attacker
downloads an infected ladder logic to a PLC (either remotely
or manipulation of legitimate network traffic) which when
uploaded crashes the engineering software.

Kalle et al. [18] present a CLIK attack that steals the control
logic from a PLC after compromising its security measures.
Then, it decompiles the stolen binary of the control logic to
inject malicious logic, followed by transferring the infected
binary back to the PLC and hiding the infection from the
engineering software by employing a virtual PLC.

Similar to CLIK, McLaughlin et al. presented SABOT [15]
a tool that uploads a targeted PLC’s control logic byte code
and decompiles it to find a mapping between the devices
connected to the PLC and variables within the control logic.
This mapping can then be changed arbitrarily and the control
logic downloaded to the PLC to cause damage to the plant.

Yoo et al. [16] present two control logic injection attacks
such as 1) data execution and 2) fragmentation and noise
padding. In the data execution attack, the attacker transfers
a malicious control logic to the data blocks of the PLC and
changes the control flow to execute the logic located in the
data blocks. Fragmentation and noise padding attacks add a
huge amount of noise to the write request packet containing
the control logic in order to subvert deep packet inspection.

ROP Attacks on IT applications. Existing literature shows a
lot of effort into exploring ROP attacks on IT applications [25],
[26], [62], [63]. Here we discuss Weidler et al’s. [27] work
since it is closest to ours, i.e., ROP on microcontrollers. Their
work presents a gadget set that is capable of erasing flash
memory and then re-programming this region and a Turing
complete gadget set that was capable of performing arbitrary
computation. Our work is different in a way that instead of
changing the firmware or the normal functionality of a PLC,
we target the control logic and make it malicious in order

224

to sabotage the connected physical process. Moreover, ROP
on PLCs runs in a continuous scan cycle instead of being a
one-time attack (unlike traditional ROP).

IX. ROP ATTACK MITIGATION IN PLC

The potential mitigation against the ROP attacks on PLCs
includes the following:

Control Logic Integrity Checking. PLCs allow remote access
to control logic for maintenance through ICS protocols. ICS
malware typically exploits this legitimate functionality to
inject malicious control logic. A device-level solution should
monitor the control flow integrity of a PLC’s control logic and
raise an alert in case of a discrepancy. However, the solution
must allow control engineers to update the logic remotely.

Message Authentication in ICS Protocols. ICS protocols
require message authentication to allow PLCs to ignore control
logic messages from an unauthenticated source. For instance,
the DNP3 protocol uses a message authentication code for
message integrity and authentication [64]. However, most ICS
protocols do not have message authentication.

Address Space Layout Randomization of PLC Firmware
and Control Logic. Address space layout randomization
(ASLR) alters the location of the objects in the memory (e.g.,
executable programs and process stack) whenever a system
reboots [65], [66]. It adds complexity to an ROP attack by
restricting the attacker from determining the exact locations of
the gadgets ahead of time using a test environment before the
attack. PLCs should employ ASLR to randomize the memory
layout of firmware, control logic, and other data structures,
raising the bar for the ROP attack requiring finding gadget
locations while launching the attack.

X. CONCLUSION

We studied ROP attacks on PLCs’ control logic programs.
We discovered several challenges to considering ROP as a
practical attack vector for ICS environments, including over-
writing the stack in a PLC memory with a gadget chain,
executing the ROP chain, and maintaining the normal PLC
operations during the attack. To overcome these challenges
and make ROP attacks applicable to most PLCs, we identified
and utilized typical PLC design features that are exploitable,
e.g., no stack protection, predictable control logic location,
and remote access to certain PLC memory regions via ICS
protocols. The attack evaluations on three physical processes
showed successful ROP attacks without affecting a PLC’s scan
time. The attacks were also not detected by Shade, an open-
source IDS for control logic detection in network traffic.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
17STCINO00001-05-00.

Disclaimer. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security.

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

(1]

[2

—

[4

[}

[5

—_

[6

—

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

221 M

REFERENCES

I. Ahmed, S. Obermeier, M. Naedele, and G. G. R. III, “Scada systems:
Challenges for forensic investigators,” Computer, vol. 45, pp. 44-51,
2012.

I. Ahmed, S. Obermeier, S. Sudhakaran, and V. Roussev, “Programmable
logic controller forensics,” IEEE Security Privacy, vol. 15, no. 6, pp.
18-24, November 2017.

“CrashOverride Malware,” https://www.cisa.gov/uscert/ncas/alerts/
TA17-163A, 2022, [Online; accessed 29-June-2022].

“Havex Malware,” https://www.cisa.gov/uscert/ics/advisories/ICSA-14-
178-01, 2022, [Online; accessed 29-June-2022].

“HatMan Malware,” https://www.cisa.gov/uscert/ics/MAR-17-352-01-
HatMan- Safety - System- Targeted - Malware- Update- B, 2022, [Online;
accessed 29-June-2022].

J. Slowik, “Evolution of ics attacks and the prospects for future disrup-
tive events,” https://www.dragos.com/wp-content/uploads/Evolution-of-
ICS- Attacks- and- the- Prospects- for- Future- Disruptive- Events-Joseph-
Slowik- 1.pdf, Dragos, Tech. Rep., 2022.

Cybersecurity and I. S. A. (CISA), “Understanding and mitigating
russian state-sponsored cyber threats to u.s. critical infrastructure,”
https://www.cisa. gov/uscert/ncas/alerts/aa22 - 011a, 2022, [Online;
accessed 29-June-2022].

M. H. Rais, M. Ahsan, and I. Ahmed, “Fromepp: Digital forensic
readiness framework for material extrusion based 3d printing process,”
Forensic Science International: Digital Investigation, vol. 44, p. 301510,
2023.

M. H. Rais, Y. Li, and I. Ahmed, “Dynamic-thermal and localized
filament-kinetic attacks on fused filament fabrication based 3d printing
process,” Additive Manufacturing, vol. 46, p. 102200, 2021.

N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.
I. Ahmed, V. Roussev, W. Johnson, S. Senthivel, and S. Sudhakaran, “A
SCADA System Testbed for Cybersecurity and Forensic Research and
Pedagogy.” in Proceedings of the 2nd Annual Industrial Control System
Security Workshop (ICSS), 2016.

S. Senthivel, I. Ahmed, and V. Roussev, “Scada network forensics
of the pccc protocol,” Digital Investigation, vol. 22, pp. S57 — S65,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1742287617301998

L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed,
and S. A. Zonouz, “Hey, My Malware Knows Physics! Attacking PLCs
with Physical Model Aware Rootkit.” in NDSS, 2017.

N. Govil, A. Agrawal, and N. O. Tippenhauer, “On ladder logic bombs
in industrial control systems,” in Computer Security. ~Springer, 2017,
pp. 110-126.

S. McLaughlin and P. McDaniel, “Sabot: specification-based payload
generation for programmable logic controllers,” Proceedings of the 2012
ACM conference on Computer and communications security, 2012.

H. Yoo and I. Ahmed, “Control Logic Injection Attacks on Industrial
Control Systems,” in [FIP International Conference on ICT Systems
Security and Privacy Protection. Springer, 2019, pp. 33-48.

A. Abbasi and M. Hashemi, “Ghost in the plc designing an undetectable
programmable logic controller rootkit via pin control attack,” Black Hat
Europe, vol. 2016, pp. 1-35, 2016.

S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “CLIK on PLCs! Attacking
control logic with decompilation and virtual PLC,” in Binary Analysis
Research (BAR) Workshop, Network and Distributed System Security
Symposium (NDSS), 2019.

H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow Plc to Detect
Remote Control-Logic Injection Attacks,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2019, pp. 109-132.

S. McLaughlin and S. Zonouz, “Controller-aware false data injection
against programmable logic controllers,” in 2014 IEEE International
Conference on Smart Grid Communications (SmartGridComm). 1EEE,
2014, pp. 848-853.

M. Rais, M. Ahsan, V. Sharma, R. Barua, R. Prins, and I. Ahmed,
“Low-magnitude infill structure manipulation attacks on fff-based 3d
printersd,” in Proceedings of the dl6th IFIP Working Group 11.10
International Conference on Critical Infrastructure Protection (March

2022). https://scholar. google. com/citations, 2022.
. H. Rais, Y. Li, and I. Ahmed, “Spatiotemporal g-code modeling for

secure fdm-based 3d printing,” in Proceedings of the ACM/IEEE 12th

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

International Conference on Cyber-Physical Systems, 2021, pp. 177—
186.

M. E. Locasto, K. Wang, A. D. Keromytis, and S. J. Stolfo, “Flips:
Hybrid adaptive intrusion prevention,” in Recent Advances in Intrusion
Detection, A. Valdes and D. Zamboni, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 82-101.

A. Shenfield, D. Day, and A. Ayesh, “Intelligent intrusion detection
systems using artificial neural networks,” Ict Express, vol. 4, no. 2, pp.
95-99, 2018.

H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS 07.
New York, NY, USA: Association for Computing Machinery, 2007, pp.
552-561.

N. Carlini and D. Wagner, “{ROP} is still dangerous: Breaking modern
defenses,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 385-399.

N. R. Weidler, D. Brown, S. A. Mitchell, J. Anderson, J. R. Williams,
A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes, “Return-
oriented programming on a resource constrained device,” Sustainable
Computing: Informatics and Systems, vol. 22, pp. 244-256, 2019.

B. Johnson, D. Caban, M. Krotofil, D. Scali, N. Brubaker, and C. Glyer,
“Attackers deploy new ics attack framework triton and cause operational
disruption to critical infrastructure,” https :// www . mandiant . com/
resources/blog/attackers-deploy-new-ics-attack-framework-triton, 2021,
[Online; accessed 26-Dec-2022].

S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V. Roussev, “Denial
of engineering operations attacks in industrial control systems,” in
Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, ser. CODASPY *18. New York, NY, USA: ACM,
2018, pp. 319-329.

N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Pem: Remote forensic
acquisition of plc memory in industrial control systems,” Forensic
Science International: Digital Investigation, vol. 40, p. 301336, 2022.
S. Qasim, A. Ayub, J. Johnson, and I. Ahmed, “Attacking the TEC-
61131 Logic Engine in Programmable Logic Controllers in Industrial
Control Systems,” in Critical Infrastructure Protection XV, J. Staggs
and S. Shenoi, Eds. Cham: Springer International Publishing, 2021.
1. A. Khan, D. Pi, Z. U. Khan, Y. Hussain, and A. Nawaz, “Hml-ids:
A hybrid-multilevel anomaly prediction approach for intrusion detection
in scada systems,” IEEE Access, vol. 7, pp. 89507-89 521, 2019.

F. S. Toker, K. Ovaz Akpinar, and . ZELK, “Mitre ics attack simulation
and detection on ethercat based drinking water system,” in 2021 9th
International Symposium on Digital Forensics and Security (ISDFS),
2021, pp. 1-6.

“Blockbuster Worm Aimed for Infrastructure, But No Proof Iran Nukes
Were Target,” https://www.wired.com/2010/09/stuxnet - 2/, 2010,
[Online; accessed 16-Jan-2023].

A. Ayub, H. Yoo, and I. Ahmed, “Empirical study of plc authentication
protocols in industrial control systems,” in 2021 IEEE Security and
Privacy Workshops (SPW). 1IEEE, 2021, pp. 383-397.

H. Wardak, S. Zhioua, and A. Almulhem, “Plc access control: a security
analysis,” in Industrial Control Systems Security (WCICSS), 2016 World
Congress on IEEE, pp. 16, 2016.

B. Middha, M. Simpson, and R. Barua, “Mtss: Multitask stack sharing
for embedded systems,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 7, no. 4, pp. 1-37, 2008.

“The Concept of Stack and Its Usage in Microprocessors,” https :
/ / opendtech . com / the - concept - of - stack - and - its - usage - in -
microprocessors/, 2023, [Online; accessed 12-January-2023].

J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1219—
1236.

T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems and software stack for embedded systems,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2225-2232, 2016.
“RX Renesas Manual,” https://www.manualslib.com/manual/1797019/
Renesas-Rx-Series.html, 2019, [Online; accessed 09-May-2021].
“M221 Hardware guide,” https://download.schneider-electric.com/files?
p_enDocType=User+guide&p_File_Name=EIO0000001384.06.pdf&p_
Doc_Ref=EIO0000001384, 2017.

“M221 programming guide,” https://download.schneider-electric.com/
files ? p_Doc_Ref=EIO0000001360, 2017, [Online; accessed 10-Oct-
2020].

225

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

226

R. A. Awad, M. H. Rais, M. Rogers, I. Ahmed, and V. Paquit,
“Towards generic memory forensic framework for programmable
logic controllers,” Forensic Science International: Digital Investigation,
vol. 44, p. 301513, 2023, selected papers of the Tenth Annual DFRWS
EU Conference. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2666281723000148

M. H. Rais, R. A. Awad, J. Lopez Jr, and I. Ahmed, “Jtag-based plc
memory acquisition framework for industrial control systems,” Forensic
Science International: Digital Investigation, vol. 37, p. 301196, 2021.
——, “Memory forensic analysis of a programmable logic controller
in industrial control systems,” Forensic Science International: Digital
Investigation, vol. 40, p. 301339, 2022.

“Renesas GNU Tools,” https://gcc-renesas.com/, 2021, [Online; accessed
09-May-2021].

M. Krotofil, K. Kursawe, and D. Gollmann, Securing Industrial Control
Systems. Cham: Springer International Publishing, 2019, pp. 3-27.
A. Erba, R. Taormina, S. Galelli, M. Pogliani, M. Carminati, S. Zanero,
and N. O. Tippenhauer, “Constrained Concealment Attacks against
Reconstruction-Based Anomaly Detectors in Industrial Control Sys-
tems,” in Annual Computer Security Applications Conference, ser. AC-
SAC 20, New York, NY, USA, 2020, p. 480495.

E. Lépez-Morales, C. Rubio-Medrano, A. Doupé, Y. Shoshitaishvili,
R. Wang, T. Bao, and G.-J. Ahn, “HoneyPLC: A Next-Generation
Honeypot for Industrial Control Systems,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’20, New York, NY, USA, 2020, p. 279291.

S. E. McLaughlin, “On Dynamic Malware Payloads Aimed at Pro-
grammable Logic Controllers.” in HotSec, 2011.

B. Lim, D. Chen, Y. An, Z. Kalbarczyk, and R. Iyer, “Attack induced
common-mode failures on PLC-based safety system in a nuclear power
plant: practical experience report,” in 2017 IEEE 22nd Pacific Rim
International Symposium on Dependable Computing (PRDC). IEEE,
2017, pp. 205-210.

D. Beresford, “Exploiting siemens simatic s7 plcs,” Black Hat USA,
vol. 16, no. 2, pp. 723-733, 2011.

J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Internet-facing
PLCs-a new back orifice,” Blackhat USA, pp. 22-26, 2015.

R. Spenneberg, M. Briiggemann, and H. Schwartke, “Plc-blaster: A
worm living solely in the plc,” Black Hat Asia, vol. 16, pp. 1-16, 2016.
G. P. H. Sandaruwan, P. S. Ranaweera, and V. A. Oleshchuk, “PLC

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

security and critical infrastructure protection,” in Proc. 2013 IEEE Sth
Int. Conf. on Industrial and Information Systems, pp. 81-85, 2013.

R. Grandgenett, W. Mahoney, and R. Gandhi, “Authentication bypass
and remote escalated I/O command attacks,” in Proceedings of the 10th
Annual Cyber and Information Security Research Conference, 2015, pp.
1-7.

S. A. Qasim, J. Lopez, and I. Ahmed, “Automated Reconstruction
of Control Logic for Programmable Logic Controller Forensics,” in
Information Security, Z. Lin, C. Papamanthou, and M. Polychronakis,
Eds. Cham: Springer International Publishing, 2019, pp. 402-422.
M. H. Rais, Y. Li, and I. Ahmed, “Spatiotemporal G-code Modeling
for Secure FDM-based 3D Printing,” in Proceedings of the ACM/IEEE
twelfth International Conference on Cyber-Physical Systems, ser. ICCPS
’21. New York, NY, USA: Association for Computing Machinery, 2021.
S. A. Qasim, J. M. Smith, and I. Ahmed, “Control logic forensics frame-
work using built-in decompiler of engineering software in industrial
control systems,” Forensic Science International: Digital Investigation,
vol. 33, p. 301013, 2020.

N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Control logic obfusca-
tion attack in industrial control systems,” in 2022 IEEE International
Conference on Cyber Security and Resilience (CSR). 1EEE, 2022, pp.
227-232.

G.-A. Jaloyan, K. Markantonakis, R. N. Akram, D. Robin, K. Mayes,
and D. Naccache, “Return-oriented programming on risc-v,” in Proceed-
ings of the 15th ACM Asia Conference on Computer and Communica-
tions Security, 2020, pp. 471-480.

A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz,
“Microgadgets: Size does matter in turing-complete return-oriented
programming.” WOOT, vol. 12, pp. 64-76, 2012.

“Overview of DNP3 Security Version 6,” https://www.dnp.org/
LinkClick.aspx ?fileticket=hyvYM YugaQI%3D&tabid=66&portalid=0&
mid=447&forcedownload=true, 2022, [Online; accessed 29-June-2022].
H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,

“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security,

2004, pp. 298-307.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE Symposium
on Security and Privacy. 1EEE, 2013, pp. 574-588.

IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2023)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

