• Skip to primary navigation
  • Skip to main content

CINA.

  • About
    • Mission
    • People
  • Research
    • Research
    • Projects
    • RFPs
  • Education
    • Resources
    • Internships
  • Publications
    • Newsletter Archive
    • Director’s Blog
  • News & Events
    • News
    • CINA Director’s Blog
    • Digital Archive
    • Events
    • Work with Us
  • Contact
  • Search Toggle
  • Skip to content

Spatiotemporal Crime Patterns Across Six U.S. Cities: Analyzing Stability and Change in Clusters and Outliers

Aug 2022

  • Journal Article

Journal of Quantitative Criminology

Abstract

 

Objectives

Examine the degree of crime concentration at micro-places across six large cities, the spatial clustering of high and low crime micro-places within cities, the presence of outliers within those clusters, and extent to which there is stability and change in micro-place classification over time.

Methods

Using crime incident data gathered from six U.S. municipal police departments (Chicago, Los Angeles, New York City, Philadelphia, San Antonio, and Seattle) and aggregated to the street segment, Local Moran’s I is calculated to identify statistically significant high and low crime clusters across each city and outliers within those clusters that differ significantly from their local spatial neighbors.

Results

Within cities, the proportion of segments that are like their neighbors and fall within a statistically significant high or low crime cluster are relatively stable over time. For all cities, the largest proportion of street segments fell into the same classification over time (47.5% to 69.3%); changing segments were less common (4.7% to 20.5%). Changing clusters (i.e., segments that fell into both low and high clusters during the study) were rare. Outliers in each city reveal statistically significant street-to-street variability.

Conclusions

The findings revealed similarities across cities, including considerable stability over time in segment classification. There were also cross-city differences that warrant further investigation, such as varying levels of spatial clustering. Understanding stable and changing clusters and outliers offers an opportunity for future research to explore the mechanisms that shape a city’s spatiotemporal crime patterns to inform strategic resource allocation at smaller spatial scales.

Read more

Authors

  • Rebecca Walter
  • Marie Tillyer
  • Arthur Acolin
Publication Download

Topics:

  • Geospatial
  • Networks
  • Social networks

Research Areas:

  • Criminal network analysis
  • Dynamic patterns of criminal activity
  • Network analytics

Related Project:

  • Innovative Spatiotemporal Pattern Detection: Examining Changes in Crime Hot Spots Across 6 U.S. Cities

*The programs and services offered by George Mason University are open to all who seek them. George Mason does not discriminate on the basis of race, color, religion, ethnic national origin (including shared ancestry and/or ethnic characteristics), sex, disability, military status (including veteran status), sexual orientation, gender identity, gender expression, age, marital status, pregnancy status, genetic information, or any other characteristic protected by law. After an initial review of its policies and practices, the university affirms its commitment to meet all federal mandates as articulated in federal law, as well as recent executive orders and federal agency directives.

CINA Now

Events

All Events

Publications

The Key to Deobfuscation is Pattern of Life, not Overcoming Encryption

Published: Oct 4, 2025

The Organized Activities of Ransomware Groups: A Social network Approach

Published: Mar 14, 2025
All Publications

News

CINA Distinguished Speaker Series with Colton Seale: Interviewer Mindset

CINA  |   April 3, 2025  |   Posted In:
  • Digital Archive
  • Uncategorized

CINA  |   March 6, 2025  |   Posted In:
  • Uncategorized
All News

Science and Technology Directorate’s Office of University Programs
CINA at George Mason University Logo
Copyright © 2025 All Rights Reserved | CINA Is A Department of Homeland Security Center of Excellence led by George Mason University
  • Facebook
  • Twitter
  • Instagram
  • Linkedin
  • YouTube